美女头像这么多,腾讯云安全用大数据告诉你哪个是骗子
所以我们会想到,用更多深度学习的办法。下面我列了一个我们看到的方法,常规的像异常检测,消息的识别,以及比如像用的最多的推荐,会在不同的维度上用到不同的算法,像异常识别这里,机器学到更多的,像有监督无监督的办法都会去利用,在误差和漏洞上面都会比较高,最终输出的无非是分类跟解释,但是由于所有多样性的变化,导致整体的效果,单独应用效果并不好,垃圾箱的检测也是一样的,主要是基于有监督学习的算法,有监督学习的算法准确率高,但是覆盖率依然很差,最终分类的结果在多样化的情况下,整体的效果并不是特别好。最底下那个是我列出来的大概参考,这不是安全里面更多的内容,主要是用在推荐的场景,主要也是有监督的学习算法。所以基于这些坑,我们就想到,最终要解决安全对抗和黑产多样的手段化,不能依赖于单纯的算法,而是要多个维度解决框架的问题,需要基于腾讯现在的海量用户。 现在腾讯的社交网络每个月有 8 亿左右的月活动数据,我们需要依据这个庞大的数据集,去挖掘多维度的数据和模型来进行学习。所以基于刚刚的这个思路,我们把数据的模型抽象成了四个大块。 第一大块是社交的大数据,我们会把社交的这种社交关系、内容,以及业务各种正常的请求归到数据维度上。 第二块是在样品和标签上面,因为刚刚讲过要有机器学习,所以一定要样品跟标签。 第三块来讲,机器学习里大家都会提到一个场景,有监督学习、无监督学习或叫半监督学习,这三种不同场景学习的时候,没有哪一种是可以一成不变的,换句话说,一定是多种去结合的,所以所有的场景当中,我们一定是需要这种标签和样本来进行汇总的。这个样本和标签,我们会在中间把样本和标签纳入到无监督和监督学习当中去,同时也会有算法。 第四块是根据特征,包括功能画像、批量团伙以及历史黑数据,最后根据模型进行精准预测和主动预警。我这里提了一个主要的作用,框架,最终我们把这个框架落地到三个角度,账号、内容以及风险管理,在这三个维度上面去进行落地。 我们首先讲账号,账号是万恶之源,所有一切的问题其实都是来自于账号,因为如果没有登陆账号,其实能做的无非就是传统的网络安全中间的内容,包括有漏洞,DDoS攻击,一旦有账号,里面能做的或者能获益的点就更多了。 在主机、终端、业务网络等多个维度上,因为有账号所以有更多可利用的空间,会发展出入侵、木马、恶意注册登陆等等,都是一些主要的入口。单独的这种模型已经无法识别里面的恶意,因为恶意的操控人五花八门,他的目的各异,也没有较强的规律跟统计的特性,最终是需要通过把整个恶意行为纳入监测系统,形成各种恶意的感知和模型样本进行预防和防控。 我们基于账号设计了一个框架,这是一个批量的恶意注册账号的识别模型,这个核心主要是通过全量社交网络的分析,我们设计了一个叫SybiRank的算法,主要是依据图挖掘合成的,核心是进行用户分类,对不同的类别进行打分,最后输出一个静态的种子用户,通过在流水当中机器进行学习,进行自动的分类和识别,来识别出恶意、可疑和温和的用户,最终根据不同的数据来进行应用。 这种模式其实结合无监督、有监督跟半监督结成的闭环,整个流程中比较突出的挑战不是来自于算法本身的设计,而是说算法要在海量的数据当中如何跑。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |