加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长百科 > 正文

深度解析:AI倒逼下的英特尔

发布时间:2019-12-10 11:19:51 所属栏目:站长百科 来源:凤凰科技
导读:副标题#e# 导语:商业杂志《快公司》发表深度文章称,在摩尔定律面临失效,人工智能(AI)复兴的背景下,传统芯片巨头英特尔公司不得不转型,不再依赖CPU单打独斗,通过收购获取适合训练神经网络的芯片。 北京时间12月9日消息,商业杂志《快公司》发表深度文

Nervana并不是英特尔在2016年的唯一一笔收购交易。同年,英特尔还收购了另外一家公司Movidius,后者一直在开发能够在无人机或智能相机等设备内部运行计算机视觉模型的小型芯片。英特尔的Movidius芯片销量并不高,但是一直在快速增长,并开拓了让斯万感到兴奋的物联网市场。在旧金山活动上,英特尔还宣布了新款Movidius芯片,将在明年上半年推向市场。

Nervana创始人兼CEO纳温·拉奥(Naveen Rao)表示,许多英特尔客户至少在一定程度上在数据中心服务器使用的常规英特尔CPU中从事AI计算,但是要让它们通力合作满足神经网络的需求并不容易。另一方面,Nervana芯片包含了多个连接,这样他们就能轻松与数据中心的其他处理器协作。

“现在,我就可以调出我的神经网络,把它们分成能够一起协作的多个小系统,”拉奥称,“这样我们就能让整个服务器机架,或者四个机架,共同解决一个问题。”

2019年,英特尔预计将从AI相关产品中获得35亿美元营收。目前,只有少数英特尔客户正在使用Nervana芯片,但是它的用户群很可能在明年显著扩大。

长期芯片理念的转变

Nervana芯片的推出代表着英特尔根深蒂固的信念正在演变,这家芯片巨头曾经深信:一颗CPU就能处理PC或服务器所需要做的一切计算任务。这种无处不在的信念伴随着游戏革命而变化,后者需要极强的计算能力来显示复杂的图形。合理的做法是,把图形处理工作交给GPU,这样CPU就不用承担这部分任务。斯万称,几年前,英特尔开始在CPU中整合GPU,明年将首次发布独立GPU。

相同的思路也适用于AI模型。在数据中心服务器中,一定量的AI任务可由CPU处理,但是随着任务量增大,更高效的做法是把它转移给另外一颗专用芯片。英特尔一直在投资设计新的芯片,把CPU和一系列专用加速芯片整合在一起,从而满足客户的性能和工作量需求。

“当你设计一款芯片时,你需要发挥系统的力量解决问题,这常常需要更多芯片,不是一颗CPU能够做到的。”斯万称。

此外,英特尔现在更多地依赖软件将其处理器的性能和功效推高到新水平,这改变了英特尔内部的平衡。一位分析师称,在英特尔,软件开发目前和硬件开发“平起平坐”。

深度解析:AI倒逼下的英特尔

英特尔Nervana推理芯片

有些情况下,英特尔不再独立生产所有芯片。这一划时代改变背离了公司的传统做法。现在,如果芯片设计师认为其他公司能够在一款芯片生产上做得比英特尔更好,效率更高,英特尔就会将它的生产外包。例如,用于AI训练的新款芯片就是由台积电代工的。

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读