加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长百科 > 正文

人工智能机器学习常用算法总结及各个常用算法精确率对比

发布时间:2020-05-13 09:41:10 所属栏目:站长百科 来源:站长网
导读:副标题#e# 机器学习的知识树,这个图片是Github上的,有兴趣的可以自己去看一下: 地址:https://github.com/trekhleb/homemade-machine-learning 简单的翻译一下这个树: 英文中文 Machine Learning 机器学习 Supervised Learning 监督学习 Unsupervised L

也叫奇异值分解(Singular Value Decomposition),是线性代数中一种重要的矩阵分解,是矩阵分析中正规矩阵酉对角化的推广。在信号处理、统计学等领域有重要应用。SVD矩阵是一个复杂的实复负数矩阵,给定一个m行、n列的矩阵M,那么M矩阵可以分解为M = UΣV。U和V是酉矩阵,Σ为对角阵。

人工智能机器学习常用算法总结及各个常用算法精确率对比

PCA实际上就是一个简化版本的SVD分解。在计算机视觉领域,第一个脸部识别算法就是基于PCA与SVD的,用特征对脸部进行特征表示,然后降维、最后进行面部匹配。尽管现在面部识别方法复杂,但是基本原理还是类似的。

独立成分分析(ICA)

独立成分分析(Independent Component Analysis,ICA)是一门统计技术,用于发现存在于随机变量下的隐性因素。ICA为给观测数据定义了一个生成模型。在这个模型中,其认为数据变量是由隐性变量,经一个混合系统线性混合而成,这个混合系统未知。并且假设潜在因素属于非高斯分布、并且相互独立,称之为可观测数据的独立成分。

人工智能机器学习常用算法总结及各个常用算法精确率对比

ICA与PCA相关,但它在发现潜在因素方面效果良好。它可以应用在数字图像、档文数据库、经济指标、心里测量等。

人工智能机器学习常用算法总结及各个常用算法精确率对比

上图为基于ICA的人脸识别模型。实际上这些机器学习算法并不是全都像想象中一样复杂,有些还和高中数学紧密相关。

强化学习 Q-Learning算法

Q-learning要解决的是这样的问题:一个能感知环境的自治agent,怎样通过学习选择能达到其目标的最优动作。

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读