技术就是生产力 关于ASM投放人工智能有话说!
同样的内容推送给不同的人,结果大不相同。再比如喜欢玩游戏的,你推送一个更好玩的游戏给他一定更高效。包括FEED流广告、DSP短信推送,这些内容与方法的本身并没有任何问题,问题在于你能否触达到那些真正的目标消费者。大数据公司通过人工智能、机器学习对消费者精准定位,再进行DSP推送,其转化可以做到5%-8%,远高于企业自身通过渠道推广的转化率1%。 关于苹果竞价广告,展示量是一方面,用户的下载率才是最大的考验。排除品牌因素外,如果推送给那些真正需要的目标用户,下载与转化就不是问题。 通过人工智能的深度学习,大数据技术建模分析,可以对APP用户进行精准的用户画像,这是了解用户的第一步,用户画像可以对APP定向投放给出最基础的参考依据。此外,在实际定向投放,不断优化,增加定向维度,最终也能带来转化率的提升及CPA的下降(参见上文图表)。 在实际操作中,还可以根据消费者行为数据的挖掘:基于时间动态制定价格,基于年龄、性别可以对价格进行实时优化调整。如何获知这些数据,就需要机器学习不断的搜集,发现。需要指出的是,关于智能定向,苹果后台的人群维度数据只能对单一维度进行分析,这在实际投放优化中有明显不足。量江湖的细分定向数据,可以明显区分不同维度的人群的转化数和平均CPA的不同,为广告主下一步筛选人群定向提供可靠的数据依据。比如通过人工智能可以对人群进行多维度定向分析,包括性别、年龄、地域、时段。还可以根据不同App的实际情况进行定制化划分。 以年龄段定向投放为例,当我们把定向2段的数据变为定向6个段时,如下图所示,从定向维度数据中可以看出,25-34岁的男性用户是转化最高的用户,且CPA价格较低;而55-63岁的男性用户的CPA价格明显过高,且转化量很低,这个维度的用户在后续投放中可被取消。进一步的定向优化也可以将55-63岁的女性用户排除。以此类推不断优化,当有更多维度加入一起分析,人工智能可以给出更精准的答案。
![]()
图2 3、智能投放:实时高效优化迭代,总能准确把握那个最佳值(更低CPA VS更多下载量) 传统的人工投放,是这样的,选词之后,设定周期及金额,设置广告策略,进行广告投放,查看结果。期间账户结构设定繁琐,耗时长,每次只能进行一个策略,当投放行为量大时,需要动用大量人力,最终获得的CPA成本高,调整过程也困难。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |