大数据风控到底是什么?大数据风控要如何搭建?
发布时间:2019-06-24 05:08:22 所属栏目:编程 来源:未知
导读:什么是大数据风控大数据风控即大数据风险控制,是指通过大数据核心算法建立风险模型,在收集各种维度数据基础上,结合互联网化评分和信用管理模型,提取出对企业有用的数据,再进行分析判断,最终达到风险控制和风险提示的目的。大数据风控是互金平台在创新
什么是大数据风控
大数据风控即大数据风险控制,是指通过大数据核心算法建立风险模型,在收集各种维度数据基础上,结合互联网化评分和信用管理模型,提取出对企业有用的数据,再进行分析判断,最终达到风险控制和风险提示的目的。
大数据风控是互金平台在创新信用管理和风险管理方面的一种新思路。相对于传统风控,大数据风控在建模原理和方法论上并无本质区别,只不过是利用互联网这个时代的特征而已。目前领先的大数据风控使用的还是小数据,围绕客户信息,从财产、安全、守约、消费、社交等多个维度来评估客户的信誉水平,并为其建立客户信誉数据,从而减少风险的来源。
为什么要用大数据风控
据统计,目前银行传统的风控模型对市场上70%的客户是有效的,但是对另外30%的客户,其风控模型有效性将大打折扣。而大数据时代的来临丰富传统风控的数据纬度,利用多维度数据来识别借款人风险,包括社交、征信、消费、兴趣等。客户数据越多,信用风险就被揭示的更充分,信用评分就会更加客观。大数据中风控中的数据维度可以作为另外的30%客户风控的有效补充。
大数据风险控制的作用本来就是从原来被拒绝的客户中找到合格客户,识别出已经通过审核的高风险客户和欺诈客户。可以大大提高互金行业的效率和风控能力,有效的控制坏账率,从而让企业盈利。大数据风控是金融行业发展过程中必须结合的一项科技手段。
大数据风控的应用场景
大数据风控模型的应用场景非常广泛,只要牵扯互联网金融的行业就少不了大数据风控的存在。
从资金的角度来看,风控模型是为了评估客户还款能力和还款意愿,反欺诈反作弊,防止客户薅羊毛和保证平台安全等功能。
从行业维度看,主要包括消费金融、供应链金融、信用借贷、P2P 、大数据征信、第三方支付(第四方聚合支付)等各细分领域,同时还可用于电商、游戏、社交等“传统”互联网公司。可以说,任何互联网公司都需要风控。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |