数据分析专家对冠状病毒到暗数据的分析与探讨
Schmarzo说:“如果没有足够的失败,那就意味着尝试并不足够,也就是努力并不够。失败是一种有效的学习方法。在商业智能方面,如果构建的架构无法正常工作,那么这样的失败将不会被接受。不断尝试不同的数据和数据元素的组合、转换和扩充,试图找出这些变量和组合中哪一个确实能提供更好的预测。” Mann说:“商业智能和数据科学是两种完全不同的科学。它们在很大程度上都是一种科学。商业智能随着知识的积累而成长,这对于企业如何开展业务实际上非常重要。 这两种科学确实存在一些非常大的差异。数据科学是关于创新过程,例如数据科学谈论的是创新源于从失败中吸取的教训。我认为,如果没有失败,那么就不会学习,通过尝试可以获取更多的数据和理解,应该询问更多的问题,而不是寻找更多的答案。 因此,数据科学家似乎提出了很多问题,而用户又对数据提出了更多问题。用户得到的每个答案都只是提出更多问题的机会。因此,这是另一种思维方式。我认为,考虑将来自任何来源的数据带到任何问题,而不是试图找到答案,这是一种不同的思维方式。因此,数据科学家如何看待创新机会的思维方式确实存在根本性的差异。将数据视为永远没有最终答案,并且总是提出更多问题。而商业智能专家寻求答案,因为他们的业务需要开展,这是他们需要的重要内容。 因此,这种创新理念与经营业务无关。这是我看到的最大差异之一,它在诸如预先部署、精心计划与按需添加数据源等方面非常出色。 由于在商业智能中,知道要问的是什么问题,所以知道打算通过数据科学来规划该数据集。因此需要能够引入新的数据集,并在运行中不断丰富。其中遇到的一些问题确实将数据科学的概念锁定在了创新和问题上。我认为这是一种非常有趣的观察方式。” Schmarzo说:“我再补充两点。第一,商业智能专家真正关心的是了解发生的情况以及发生的领域。数据分析科学家是试图了解它为什么会发生,当将它们组合在一起时,它会变得功能强大。 另一件事,我认为在商业智能专家将逐渐变得成熟。真正了解数据和分析可以在何处以及如何推动业务发展。他们具有更强的业务敏锐度,并且擅长进行价值工程,识别、验证和确定价值创造的来源。 然后将它们与数据科学相结合,这将成为一个强大的团队。有人曾问我,商业智能和数据科学有什么区别?我花了很长的时间来认真思考,研究这二者在工作中是如何思考和处理的,以及如何改变事情的思维方式。然后得出的结论是团队需要这两方面的人才。” Mann说:“这让我想到的另一件事,就是让人工智能在很大程度上完成人类的工作。商业智能专家具有深厚的商业知识,这也许是数据科学家不具备的能力,因此需要了解他们的业务,利用他们的智慧来了解他们试图解决的问题。 而数据科学家通常会因为处理海量的数据集之类的东西,而经常会使用机器学习和人工智能技术。因为人类确实不善于观察,但机器确实擅长于此。因此,当接触到巨大的数据集时,使用机器学习几乎成为获得洞察力的必然选择,而商业智能专家不一定需要采用机器学习,只需要获得正确的数据集,并以正确的方式使用它们来获得所需的洞察力。” Schmarzo说:“但是有趣的是,当我们考虑到冠状病毒疫情带来的影响,必须能够使用这些机器来帮助我们对客户、员工、产品、服务、运营的每一个方面进行非常细化的洞察。正是这种粒度级别可以使我们从中获得更多收益,我们只是追求采用更少的钱做更多的事情。 传统上,商业智能一直专注于聚合数据的分类,在聚合水平上看待事物以及做出一些决定。当我们试图用更少的钱做更多的事情时,我们需要那些机器来告诉哪些患者患有哪种疾病的风险,哪些人面临患病的最大风险。” 为什么“暗数据”很重要?针对暗数据的有效策略应该是什么? (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |