计算机视觉,落地的技术与艺术
王磊总结道,确定方向、孵化产品、打造标杆、推广复制背后有一条暗含的逻辑,企业在不同的阶段、不同的场景下所应采取的做法也不尽相同,要随着变化而变化。AI技术的商业化产品实践是一个循环演进的过程,要不断地理解行业、提供价值、优化价值、找寻新方向、孵化新产品,不断地向前探索。 “在AI生态建设上,腾讯云AI致力于连接产业和开发者,共建开放生态,共建共赢。我们希望有更多的合作伙伴能加入到腾讯云AI的生态里面来,一起加速人工智能行业应用的落地。” 分享结束后,王磊老师还对评论区提出的腾讯内部AI平台差异和落地等问题作了进一步解答。 计算机视觉技术在服装行业的落地实践 “从创业公司维度看AI在行业的落地,可能会有不一样的视角。在人工智能落地的所有行业里面,可能服装或者时尚这样的一些行业是相对来讲大家偏陌生的一个行业。为什么我们要选择在服装行业来落地人工智能,今天希望跟大家一起分享探讨。” 知衣科技联合创始人兼CEO郑泽宇老师作为AI领域的创业者,带来了一些不同于腾讯云AI落地的思考与视角。郑泽宇老师此前曾供职于Google,也是国内知名的TensorFlow专家。他提到,从2015年起人工智能概念开始火爆,大家都希望拿着技术的锤子去找场景的钉子,AI领域的初创企业也特别多,不同的技术方向会孵化出不同的AI企业。这个阶段被他称之为AI技术落地的第一阶段,技术寻找场景。 第一阶段经过一段时间的发展以后,AI领域的初创公司撞上了一堵“南墙”:巨头公司下场,竞争激烈;创业公司资金紧张,AI烧钱太快。这个时候,如何让AI技术在更多其他行业、场景下得到应用并产生商业价值,成了AI商业化落地的新主题,也就进入了人工智能落地的第二个阶段,场景结合技术。 以服装行业为例,其实在这个行业里面要用到的技术特别多,除了CV这样的技术之外,自然语言处理、关联推荐、以图搜图、数据分析、趋势预测等都是关联技术。郑泽宇表示,每个行业的数据非常多,不同的数据需要用到不同的整理方式方法和算法技术,基于这样的技术和应用场景深度融合、绑定以后,才发现技术对一个行业的影响是可以做到深远的。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |