当自动驾驶还未摆脱人类
MIT 认为「对驾驶员状态的感知和监控是实现高效人机共驾的的第一步,同时也是最关键的一步。」在过去的二十多年里,来自机器视觉、信号处理、机器人等领域的专家都进行过相关课题的研究,目的都是在探讨如何尽可能保证驾乘人员的安全。此外,对驾驶员状态的监测对如何改善和提升人机交互界面、高级驾驶辅助系统 ADAS 的设计都有很大帮助。随着汽车智能程度的不断提高,如何准确、实时地探测到驾驶员的各种行为对打造安全的个性化出行体验尤为重要。 比较有意思的一点是,从完全的手动驾驶到全自动驾驶,这其中涉及到不同模式切换的问题。一般来说双手脱离方向盘(handoff)就是一种信号,可能表示系统要做好接管的准备了,但还有什么其他更准确的信息可以用来判断,可能这也是「驾驶员监控」的研究人员需要持续思考的地方。 四、共享的感知控制(Shared Preception-Control) 通俗点来说,这相当于为整个自动驾驶系统增加了「一双眼睛和手」。目的是建立额外的感知、控制和路线规划机制。即便在高度自动驾驶系统运行状态下,也要及时地为驾驶员推送信息,将其纳入到整个驾驶过程中。 研究全自动驾驶的目的就是为了更好地解决「感知-控制」的问题,考虑到人类的不靠谱和行为的不可测性。所以传统观点认为最简单的办法就是把人从开车这件事上排除掉,像十几年前在 DARPA 挑战赛中获胜的队伍一样。
但和传统解决思路相反的是,MIT 提出的「以人为中心」的理论将人置于感知和决策规划闭环中的关键位置。因此,整车感知系统就变成了支持性的角色,为人类驾驶员提供外部环境信息,这其实也是为了解决机器视觉本身存在的局限性而考虑的。 ![]() 表 II MIT「以人为中心」自动驾驶系统执行的感知任务,包括对驾驶员面部表情、动作以及可驾驶区域、车道线以及场景内物体的检测 | MIT 在 MIT 的研究中,工作人员围绕这个原则设计了几条关键的算法。表 II 是其中几个典型的案例。首先,从视觉上可以看到神经网络做出的判断、道路分割的区域以及对驾驶场景状态的预估的可信程度;其次,将所有的感知数据整合并输出融合式的决策建议,这样在表 IV 的场景下就能够对整体风险进行预估;再次,MIT 一直使用的是模仿学习:将人类驾驶员操控车辆时方向盘的动作作为训练数据,进一步优化端到端的深度神经网络;最后,MIT 使用的端到端的神经网络属于一个叫做「arguing machines(争论机器)」框架的一部分,它为主要的感知-控制系统(表 III)提供了来自人类的监督。 这里的「争论机器框架」是 MIT 2018年提出的一个概念,详细技术细节可点击(http://1t.click/DAK)查看。它将主要 AI 系统与经过独立训练以执行相同任务的次要 AI 系统配对。 该框架表明,在没有任何基础系统设计或操作知识的情况下,两个系统之间的分歧足以在人工监督分歧的情况下提高整体决策管道的准确性。 ![]() 表 III 对「争论机器」框架在「Black Betty」自动驾驶测试车上的应用和评估 | MIT ![]() 表 IV 通过结合车内外感知系统数据得出的融合型决策能够充分预估可能发生的风险 | MIT 五、深度定制化(Deep Personalization) 这里涉及到一个「将人类融入到机器中」的概念。通过调整 AI 系统的参数,使其能够更适合人类操作并呈现出一定程度的定制化。最终的系统应该带有该驾驶员的行为特征,而不是像刚出厂时的普通配置一样。 六、不回避设计缺陷(Imperfect by Design) (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |