由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
7.2 动图演示
7.3 代码实现
注意:这里用到了完全二叉树的部分性质:
http://www.cnblogs.com/guoyaohua/p/8595289.html
- //声明全局变量,用于记录数组array的长度;
- static int len;
- /**
- * 堆排序算法
- *
- * @param array
- * @return
- */
- public static int[] HeapSort(int[] array) {
- len = array.length;
- if (len < 1) return array;
- //1.构建一个最大堆
- buildMaxHeap(array);
- //2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
- while (len > 0) {
- swap(array, 0, len - 1);
- len--;
- adjustHeap(array, 0);
- }
- return array;
- }
- /**
- * 建立最大堆
- *
- * @param array
- */
- public static void buildMaxHeap(int[] array) {
- //从最后一个非叶子节点开始向上构造最大堆
- for (int i = (len/2 - 1); i >= 0; i--) { //感谢 @让我发会呆 网友的提醒,此处应该为 i = (len/2 - 1)
- adjustHeap(array, i);
- }
- }
- /**
- * 调整使之成为最大堆
- *
- * @param array
- * @param i
- */
- public static void adjustHeap(int[] array, int i) {
- int maxIndex = i;
- //如果有左子树,且左子树大于父节点,则将最大指针指向左子树
- if (i * 2 < len && array[i * 2] > array[maxIndex])
- maxIndex = i * 2;
- //如果有右子树,且右子树大于父节点,则将最大指针指向右子树
- if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
- maxIndex = i * 2 + 1;
- //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
- if (maxIndex != i) {
- swap(array, maxIndex, i);
- adjustHeap(array, maxIndex);
- }
- }
7.4 算法分析
最佳情况:T(n) = O(nlogn) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)
8、计数排序(Counting Sort)
计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。 (编辑:西安站长网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|