TensorFlow与PyTorch之争,哪个框架最适合深度学习
接下来,我们使用 model.add() 方法以序列方式直接添加层。层的类型可以从 tf.layers 导入,如下代码片段所示: 五、TensorFlow 和 PyTorch 的优缺点 TensorFlow和PyTorch各有其优缺点。 TensorFlow 的优点:
TensorFlow 的缺点:
PyTorch 的优点
PyTorch 的缺点:
六、PyTorch 和 TensorFlow 安装、版本、更新 PyTorch 和 TensorFlow 近期都发布了新版本:PyTorch 1.0(首个稳定版)和 TensorFlow 2.0(beta 测试版)。这两个版本都有重大的更新和新功能,让训练过程更高效、流畅和强大。 如果你要在自己的机器上安装这些框架的最新版,你可以用源代码 build 或通过 pip 安装。 1. PyTorch 安装 macOS 和 Linux
Windows
2. TensorFlow 安装 macOS、Linux 和 Windows
要检查安装是否成功,可使用命令提示符或终端按以下步骤操作。 七、TensorFlow 还是 PyTorch?我的建议 TensorFlow 是一种非常强大和成熟的深度学习库,具有很强的可视化功能和多个用于高级模型开发的选项。它有面向生产部署的选项,并且支持移动平台。另一方面,PyTorch 框架还很年轻,拥有更强的社区动员,而且它对 Python 友好。 我的建议是如果你想更快速地开发和构建 AI 相关产品,TensorFlow 是很好的选择。建议研究型开发者使用 PyTorch,因为它支持快速和动态的训练。 原文链接:https://builtin.com/data-science/pytorch-vs-tensorflow 【本文是51CTO专栏机构“机器之心”的原创译文,微信公众号“机器之心( id: almosthuman2014)”】 戳这里,看该作者更多好文
(编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |