加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 建站 > 正文

弥合AI大规模落地的巨大缺口!阿里、腾讯、百度等联合推出互联网服务AI基准

发布时间:2019-09-16 20:34:39 所属栏目:建站 来源:Maglish
导读:副标题#e# 现如今,互联网服务正经历着根本性的变化,并逐渐转向智能计算时代。现代互联网服务提供商普遍采用人工智能来增强其服务。在这种背景下,研究人员提出了许多创新的人工智能算法、系统和架构,因此基准(benchmark)和评估基准的重要性也随之上升

针对上面总结的突出人工智能问题,作者给出了人工智能算法的具体实现。表 3 和表 4 列出了 AIBench 中的组件基准和微基准。总的来说,AIBench 包括 16 个用于 AI 问题的组件基准和 12 个从典型 AI 算法中提取计算单元的微基准。

弥合AI大规模落地的巨大缺口!阿里、腾讯、百度等联合推出互联网服务AI基准

表 3:AIBench 组件基准

弥合AI大规模落地的巨大缺口!阿里、腾讯、百度等联合推出互联网服务AI基准

表 4:AIBench 微基准

2.4 数据模型

为了满足不同应用的数据集的多样性,作者收集了 15 个具有代表性的数据集,包括 ImageNet、CIFAR、LSUN、WMT English-German、CityScapes、Librispeech、Microsoft Coco、LFW、VGFace2、Robot Pushing、MovieLens、ShapeNet、Gigaword、MNIST、Gowalla 以及来自行业合作伙伴的 3D 人脸识别数据集。

2.5 评价指标

AIBench 专注于准确性、性能和能源消耗等行业重点关注的指标。在线推理的度量包括查询响应延迟、尾部延迟和性能方面的吞吐量、推理精度和推理能耗。离线训练的度量包括每秒处理的样本、训练特定 epoch 的时间、训练达到目标精度的时间和训练达到目标精度的能量消耗。

3、设计和实现应用基准

在 AIBench 框架的基础上,作者实现了第一个端到端的 AI 应用基准,对现实的电子商务搜索任务进行完整的用例建模。

3.1 设计和实现

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读