DL+视觉分析+流媒体分析=大数据成功案例
让我们回到Autoencoder用例来实现电信公司的预测性维护。在TIBCO StreamBase中,您可以轻松应用构建的H2O Autoencoder模型,而无需通过StreamBase进行任何重新开发 H2O连接器。您只需附加由H2O框架生成的Java代码,其中包含分析模型并编译为非常高性能的JVM字节码: 最重要的经验是:在构建分析模型之前考虑执行要求。对于延迟,你需要什么样的性能?您需要每分钟、或者几毫秒能够处理多少事件数量?您是否需要将分析模型分布到具有多个节点的群集?你多久需要改进和重新部署分析模型?您需要在项目开始时回答这些问题,以避免分析模型的双重努力和重新开发! 另一个重要的事实是,分析模型并不总是需要“非常快速或频繁执行模型的实时处理”。在上述电信公司的例子中,这些高峰和失败可能会在随后的几天甚至几周发生。因此,在许多使用案例中,因此,每天或每周应用一次分析模型就好了,而不是每一次新事件。 深度学习+视觉分析+流媒体分析=新一代大数据成功案例 深度学习允许以更高效的方式解决诸如交叉销售、欺诈检测或预测性维护等许多众所周知的问题。另外,您还可以解决其他场景,这些场景之前无法解决,例如准确高效的对象检测或语音到文本的翻译。 可视化分析是深度学习项目成功的关键组件。它简化了(公民)数据科学家对深度神经网络的开发,并允许业务分析师利用这些分析模型来发现新的见解和模式。 今天,(公民)数据科学家使用R或Python等编程语言,Theano,TensorFlow,MXNet或H2O深水等深度学习框架以及像TIBCO Spotfire这样的可视化分析工具来构建深度神经网络。将分析模型嵌入到业务分析师视图中,以便在不知道技术细节的情况下利用它。 未来,可视化分析工具可能会嵌入神经网络功能,就像今天已经嵌入了其他机器学习功能(如聚类或逻辑回归)一样。这将允许业务分析师在没有数据科学家的帮助下利用深度学习,并适用于更简单的用例。 但是,不要忘记,构建分析模型以发现洞察力只是项目的第一部分。事后部署到实时与第二步一样重要。在找到见解和将新见解应用于新事件的工具之间的良好整合可显著提高数据科学项目的上市时间和模型质量。开发生命周期是一个连续的闭环。分析模型需要在特定的序列中进行验证和重建。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |