AI落地无线网络运维四大难题待破解
副标题[/!--empirenews.page--]
随着无线通信网络的发展,未来网络在频段和组网上将更加复杂,再加上业务多样性和终端的多类型,无线通信系统的规模和复杂度将日益增长。 对于未来体系庞大的通信系统,无线网络运维将面临诸多挑战,例如虚拟化与网络演进增加运维复杂性,单个问题可能会触发多个网络区域的告警;用户需求对网络运维质量要求提升,期待延迟容忍度从300毫秒降低到10毫秒;网络中可供分析的大量数据难以处理,实时分析数据量将增加1000倍以上等。 无线网络运维中因此而出现了故障分析定位及故障溯源困难、故障无法预测、运维派单不准确、现有的响应式运维模式效率低、客户体验差等问题。面对这些网络运维的压力和挑战,分析、拟合、经验流等传统的处理方法,已经越来越难以解决无线网络运维的问题。 人工智能为网络运维带来曙光 人工智能的再上巅峰,让无线网络的运维系统看到了一线曙光,通过引入AI这柄“利器”,依托人工智能的自学习、深度学习能力,可以在海量的运维数据中抽取隐含的关联特征和规则,追溯事件根因、指导故障分析和定位,同时可以通过共性特征的提取总结,对未来事件进行预测。 例如,结合提供的告警、资源、网络拓扑数据,采用相关人工智能方法探知故障告警之间关联关系及故障原因定位因素,形成故障定位体系及网络维护管理体系,提升故障解决效率;基于无线网络数据,采用相关人工智能方法分析和定位影响用户感知的根源问题,并指导运维部门提供系统性的优化解决机制;利用人工智能算法,以用户侧数据和网络侧数据为基础,分析用户群体特征,找出影响用户网络感知评分的关键因素,预测用户对通信网络的满意度,及时发现用户对于网络贬损的真正痛点,为运营商网络运维策略提供依据,从而提升用户体验。 尽管人工智能在无线网络的运维中有着非常良好的应用前景,并且许多运营商和设备商已经开展了探索和尝试,但至今业内仍然缺乏标杆式的案例及规模性的应用,究其原因,有几个关键问题横亘在AI和通信网络之间,阻碍了两者的结合。 问题一:无线网络数据可用性差 AI是数据“喂”出来的,无线网络拥有庞大的数据,这本是智能运维的最大优势,但是当前的无线网络数据维度高、数据类型多、数据量巨大、缺失数据多、不同设备厂家数据格式不统一,种种因素导致无线数据的使用成了AI在网络运维中的第一道门槛。主要问题如下。
为了解决数据的问题,行业需要联动,形成统一数据标准,针对无线网络数据,由权威的协会、联盟或国家部门制定统一的数据标准,包括数据格式、参数定义、计算方式等多个方面,降低数据处理的复杂度。还要进行数据脱敏,主要针对含有用户隐私或涉及信息安全的数据进行加密编码,这将有效保护个人隐私,并且不影响AI算法对数据的分析。另外需要加强分布式并行处理,对于大体量的无线数据集,建立分布式系统,并行处理数据,提高效率。 问题二:无线网络AI算法的应用难题 无线网络场景复杂多样,具有随机性和多变性的特点,有些场景下直接采用AI算法可能无法收敛或者效果比较差。这使得无线网络运维中AI的应用面临诸多挑战。
针对AI算法的问题:
问题三:无线网络AI系统开发的挑战 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |