2018年最具影响力的20篇数据科学研究论文,盘它!
几何数据:在机器学习领域针对黎曼几何的一个Python包 在机器学习领域应用黎曼几何越来越受人们关注。这篇论文引入了几何数据这一概念,也给出了应用于诸如超球面、双曲空间、空间对称正定矩阵和李群变换等多重内容计算的python包。此外,论文中还包含了对于这些多重内容的应用,以及实用的黎曼度量和相关的外生性、对数图。相应的测地线距离提供了一系列机器学习损失函数的直观选择。作者还给出了对应的黎曼梯度。几何数据的操作可用于不同的计算后台,比如numpy, tensorflow和keras。文章作者使keras深度学习框架综合应用GPU和几何数据多重内容计算变成了可能。 下载链接:https://arxiv.org/pdf/1805.08308.pdf 一个更通用的稳健损失函数 这篇论文展示了一个双参数损失函数,可视为对稳健统计学中很多常用的损失函数的一个概括,这些常用的损失函数包括Cauchy/Lorentzian, Geman-McClure, Welsch/Leclerc和广义卡尔波涅尔损失函数(按传递性分为L2,L1,L1-L2和pseudo-Huber/Charbonnier损失函数)。作者描述并可视化展示了这个损失和相应的分布,并列出了它的一些实用性特质。 下载链接:https://arxiv.org/pdf/1806.01337.pdf 反向退出:随机反向传播算法 这篇论文引入了“反向退出”的概念,也即一个灵活而应用简便的方法,可以直观地表述为,退出现象仅沿着反向传播管道发生。反向退出的应用是沿着网络中特定点插入一个或多个屏蔽层。每个反向退出的屏蔽层在正推法中被视为特征,但几乎不屏蔽部分反向梯度传播。直观来看,在任何卷积层之后插入反向退出层会带来随机梯度,随刻度特征不同而有不同。因此,反向退出非常适用于那些有多重刻度、金字塔结构的数据。 下载链接:https://arxiv.org/pdf/1806.01337.pdf 关系型强化深度学习 这篇论文引入了一个通过结构化感知和关系型推理从而提升强化深度学习(RL)的方法,主要表现在改善效率、泛化能力和提升传统方法的解读能力。通过自我感知来迭代推理场景中的主题和引导无模型原则之间的关系。结果显示,在一个拥有新型导航和任务计划的“盒世界”中,代理找到了可解释的解决方案,从而可以在基线之上改善样本的复杂度、泛化能力(在训练中能应对更的复杂场景)以及整体表现。 下载链接:https://arxiv.org/pdf/1806.01830.pdf (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |