加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 教程 > 正文

预测性维护是边缘计算与人工智能,在工业落地的最短路径?

发布时间:2019-04-01 22:29:27 所属栏目:教程 来源:彭昭
导读:副标题#e# 我的上篇文章《曾被认为是工业互联网的杀手级应用,预测性维护为何发展不及预期?》引起了行业内的广泛讨论。大家从不同的视角,包括运营技术OT、信息技术IT、数据技术DT等多个维度,一起分析了预测性维护的前景和挑战,共同献计献策。 预测性维护

Maisart是Mitsubishi Electric's AI creates the State-of-the- ART in Technology,“三菱电机的人工智能技术创造最先进技术”的缩写。Maisart与伺服驱动系统J5的集成,将以内嵌的方式,直接实现对机械传动部件(滚珠丝杠、皮带、齿轮...)与驱动器的检测诊断和预测性维护。

创新型物联网企业,乃至传统工业自动化巨头,都已开始围绕预测性维护,或者更准确的说,围绕由预测性维护引发的巨大市场空间,开展军备竞赛。

无论是预测性维护、质量控制、远程监控,或者资产追踪,其背后使用的物联网技术是一样的。因此预测性维护是一个具备横向整合能力的应用。

基于预测性维护过程中采集的设备数据,包含工艺、质量、性能、效率等指标,可以从设备层面延展到生产线层面。

预测性维护采集的数据点越多、数据的价值越大、机理模型的理解越透彻、经验积累越丰富,横向整合的能力越强,进而帮助企业以崭新的方式和手段,解决降本、提效的问题。

3. PdM的新载体

市面上已有的预测性维护方案,大部分是在云计算或者雾计算层面的,而随着边缘算力的提升,以及工业人工智能的发展,在边缘侧完成预测性维护变得经济上更加可行。

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读