加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 教程 > 正文

以FIFA球员数据集为例,详解3大酷炫可视化技巧

发布时间:2019-05-21 01:32:42 所属栏目:教程 来源:读芯术
导读:副标题#e# 可视化令数据一目了然。然而,成功的数据可视化往往很难实现。此外,向更多受众呈现这些可视化的数据,也需要耗费更多时间和精力。 大家都知道如何制作条形图、散点图和直方图,但却不注重美化它们。这在无形中会损害我们在同行和上级心中的可靠

“Anscombe四重奏”由四个相关性几乎近似于1的数据集组成,但具有非常不同的数据分布,并且在绘制时呈现出非常不同的效果。

以FIFA球员数据集为例,详解3大酷炫可视化技巧

Anscombe四重奏:相关性变化无常

因此,有时绘制相关数据变得至关重要,并且需要单独查看分布。

现在数据集中有很多列,把它们全都绘制成图形会很费力。

其实只需几行代码就可以解决。

  1. filtered_player_df = player_df[(player_df['Club'].isin(['FC Barcelona', 'Paris Saint-Germain', 
  2.        'Manchester United', 'Manchester City', 'Chelsea', 'Real Madrid','FC Porto','FC Bayern München'])) &  
  3.                       (player_df['Nationality'].isin(['England', 'Brazil', 'Argentina', 
  4.        'Brazil', 'Italy','Spain','Germany']))  
  5.                      ] 
  6. # Single line to create pairplot 
  7. g = sns.pairplot(filtered_player_df[['Value','SprintSpeed','Potential','Wage']]) 

以FIFA球员数据集为例,详解3大酷炫可视化技巧

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读