加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 教程 > 正文

Pandas必备技能之“时间序列数据处理”

发布时间:2019-06-14 00:41:10 所属栏目:教程 来源:Little monster翻译整理
导读:副标题#e# 时间序列数据Time Series Data是在不同时间上收集到的数据,这类数据是按时间顺序收集到的,用于所描述现象随时间变化的情况。 时间序列分析广泛应用于计量经济学模型中,通过寻找历史数据中某一现象的发展规律,对未来进行预测。 时间序列数据作

其中,'20180704'当天的平均值等于'20180702'-'20180704'三天的收盘价取平均的结果,'20180705'当天的平均值等于'20180703'-'20180705'三天的收盘价取平均的结果,以此类推。

  1. df['MA3'] = df['close'].rolling(3).mean() 
  2. df 
  3. Out[76]:  
  4.               ts_code  close       MA3 
  5. trade_date                             
  6. 2018-07-02  000001.SZ   8.61       NaN 
  7. 2018-07-03  000001.SZ   8.67       NaN 
  8. 2018-07-04  000001.SZ   8.61  8.630000 
  9. 2018-07-05  000001.SZ   8.60  8.626667 
  10. 2018-07-06  000001.SZ   8.66  8.623333 
  11. 2018-07-09  000001.SZ   9.03  8.763333 
  12. 2018-07-10  000001.SZ   8.98  8.890000 
  13. 2018-07-11  000001.SZ   8.78  8.930000 
  14. 2018-07-12  000001.SZ   8.88  8.880000 
  15. 2018-07-13  000001.SZ   8.88  8.846667 
  16. 2018-07-16  000001.SZ   8.73  8.830000 
  17. 2018-07-17  000001.SZ   8.72  8.776667 
  18. 2018-07-18  000001.SZ   8.70  8.716667 

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读