从单体到Flink:一文读懂数据架构的演变
发布时间:2019-07-05 05:05:21 所属栏目:教程 来源:张利兵
导读:副标题#e# 01 传统数据基础架构 如图1-1所示,传统单体数据架构(Monolithic Architecture)最大的特点便是集中式数据存储,企业内部可能有诸多的系统,例如Web业务系统、订单系统、CRM系统、ERP系统、监控系统等,这些系统的事务性数据主要基于集中式的关系
Flink能够分布式运行在上千个节点上,将一个大型计算任务的流程拆解成小的计算过程,然后将tesk分布到并行节点上进行处理。在任务执行过程中,能够自动发现事件处理过程中的错误而导致数据不一致的问题,比如:节点宕机、网路传输问题,或是由于用户因为升级或修复问题而导致计算服务重启等。 在这些情况下,通过基于分布式快照技术的Checkpoints,将执行过程中的状态信息进行持久化存储,一旦任务出现异常停止,Flink就能够从Checkpoints中进行任务的自动恢复,以确保数据在处理过程中的一致性。 6. 基于JVM实现独立的内存管理 内存管理是所有计算框架需要重点考虑的部分,尤其对于计算量比较大的计算场景,数据在内存中该如何进行管理显得至关重要。针对内存管理,Flink实现了自身管理内存的机制,尽可能减少JVM GC对系统的影响。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |