十个技巧,让你成为“降维”专家
发布时间:2019-07-17 08:17:30 所属栏目:教程 来源:PLOS 编译:啤酒泡泡、刘兆娜、李雷、sirin、邢畅、武
导读:副标题#e# 大数据文摘出品 来源:PLOS 编译:啤酒泡泡、刘兆娜、李雷、sirin、邢畅、武帅、钱天培 在分析高维数据时,降维(Dimensionality reduction,DR)方法是我们不可或缺的好帮手。 作为数据去噪简化的一种方法,它对处理大多数现代生物数据很有帮助。
所以的数据集都可以投影到这个共识空间。单个数据集的投影可以帮助观察来自不同领域的数据所描述的观察中的不同模式。图7显示了DiSTATIS在5个模拟距离表上对20个合成数据点的使用示例。不同的颜色对应不同的数据点,不同的形状对应不同的距离表。数据表之间的“折中点”用较大的菱形标记表示。有关多表数据分析的详细研究,重点是生物多组学数据集,可以请参见Meng及其同事的相关研究结果。 图7.多域数据 为同一观测值定义的多个距离表上的DiSTATIS。可以从不同的数据类型(例如,基因表达、甲基化、临床数据)或从已知的数据生成分布中重新采样的数据来计算多个距离。 技巧10:检查结果的鲁棒性并量化不确定性 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |