加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

深度学习已成功应用于这三大领域

发布时间:2018-04-03 17:43:27 所属栏目:大数据 来源:站长网
导读:副标题#e# 在本章中,我们将介绍如何使用深度学习来解决计算机视觉、语音识别、自然语言处理以及其他商业领域中的应用。首先我们将讨论在许多最重要的AI 应用中所需的大规模神经网络的实现。接着,我们将回顾深度学习已经成功应用的几个特定领域。 尽管深度

其中的一个创新点是卷积网络的应用(Sainath et al., 2013)。卷积网络在时域与频域上复用了权重,改进了之前的仅在时域上使用重复权值的时延神经网络。这种新的二维卷积模型并不是将输入的频谱当作一个长的向量,而是当成一个图像,其中一个轴对应着时间,另一个轴对应的是谱分量的频率。

完全抛弃HMM 并转向研究端到端的深度学习语音识别系统是至今仍然活跃的另一个重要推动。这个领域第一个主要突破是Graves et al. (2013),他训练了一个深度的长短期记忆循环神经网络(见第10.10 节),使用了帧-音素排列的MAP 推断,就像LeCun et al. (1998c)以及CTC 框架(Graves et al., 2006; Graves, 2012) 中一样。一个深度循环神经网络(Graves et al., 2013) 每个时间步的各层都有状态变量,两种展开图的方式导致两种不同深度:一种是普通的根据层的堆叠衡量的深度,另一种是根据时间展开衡量的深度。这个工作把TIMIT 数据集上音素的错误率记录降到了新低17:7%。关于应用于其他领域的深度循环神经网络的变种可以参考Pascanu et al. (2014a); Chung et al. (2014)。

另一个端到端深度学习语音识别方向的最新方法是,让系统学习如何利用语音(phonetic)层级的信息“排列”声学(acoustic) 层级的信息(Chorowski et al., 2014; Lu et al., 2015)。

自然语言处理

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读