基于标记数据学习降低误报率的算法优化
发布时间:2018-04-10 15:16:33 所属栏目:大数据 来源:站长网
导读:副标题#e# 无论是基于规则匹配的策略,还是基于复杂的安全分析模型,安全设备产生的告警都存在大量误报,这是一个相当普遍的问题。其中一个重要的原因是每个客户的应用场景和数据都多多少少有不同的差异,基于固定判断规则对有统计涨落的数据进行僵化的判断
本文通过一组模拟实验数据和随机森林算法,从理论上验证了“标签传递经验方法”的有效性。即通过安全分析专家对告警日志进行有效或误报的标记,把专家的知识技能转化成机器学习模型的分析能力。和其他方法相比,此方法在完成自动化学习之后就不再需要人工干预,而且会随着数据的积累对误报的剔除会更加精确。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |