什么是流式大数据,处理技术、平台及应用都
基于“流立方”的金融风控反欺诈技术体系包含技术(如设备指纹、代理侦测、生物识别、关联分析、机器学习等技术)、知识(如盗卡反欺诈、伪卡反欺诈、信用卡套现、营销反欺诈等规则与模型)、数据(如虚假手机数据、代理IP数据、P2P失信数据等标识数据)三大板块。技术部分中的设备指纹技术通过主被动混合的形式采集设备中软硬相关要素,结合概率论等算法为每一个设备颁发一个全球唯一的指纹编码,这些指纹编码在反欺诈的整个过程中起到非常积极的作用;代理侦测技术通过短时间内扫描IP相关端口来识别那些开启代理的IP,并在这些IP访问金融服务时进行识别;生物识别技术通过采集设备上用户的鼠标点击、触摸、键盘敲击等行为识别操作者是人还是机器以及是否操作者本人的问题;关联分析技术在底层通过图数据库存储不同节点以及关系信息,最终在界面上通过图的形式进行欺诈者关联分析及复杂网络分析;机器学习技术通过有监督、无监督的机器学习算法提升欺诈识别的准确率及覆盖率,并结合流立方技术提供模型的事中预测能力。 基于上述技术体系,研发了银行业务风险实时监控系统、互联网支付业务风险实时监控系统、电商业务风险实时监控系统等金融风控反欺诈系列解决方案。这些方案已应用到银行、第三方支付机构、互联网金融等领域的上百家企业。目前50%以上的线下交易都在“流立方”的保护下进行,基于“流立方”的金融风控反欺诈解决方案每天为我国的金融机构抵御上亿次的攻击。该技术已经成为我国金融安全领域基础设施必不可少的组成部分。 此外,在互联网机器防御系统中,“流立方”同样能发挥巨大作用。如今网络机器人遍布票务、电商、招聘、银行、政府、社交等各类网站,消耗了40%~60%的网络流量。网络机器人不仅消耗网络资源、影响正常客户访问、增加网站运营成本,还会爬取产品、价格信息,形成不正当竞争,甚至混淆网站用户生态,影响营销分析。传统的控制策略通过采取屏蔽频繁访问、设置验证码等方式防御网络机器人,无法应对日益智能化的新型网络机器人。基于“流立方”的互联网机器防御系统通过在Web服务器上嵌入插件或者独立的嗅探器(sniffer)程序,将全流量的Web访问请求旁路到独立的机器防御集群,进行实时的流量分析及防御决策,并将决策后的结果实时回馈到Web服务器插件中。Web服务器插件在判定当前访问的设备或者IP地址等是机器人时,能够自动改写响应内容,根据不同的风险级别自动拒绝交易或将访问者引导到第三方图形验证码服务商进行机器人验证。访问者在通过验证后可以继续正常访问Web服务。该系统还创新地将设备指纹以及人机识别服务运用到机器防御系统中,不仅增加了可分析维度,提升了控制颗粒度,同时能够对基于浏览器内核的高级爬虫进行防护。此外,将机器防御规则、数据服务、设备指纹、人机识别以及图形验证码以软件即服务(software as a service,SaaS)的形式提供服务,进一步降低了互联网网站客户的运维门槛,提升了产品竞争力。该机器防御系统工作过程如图4所示。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |