【独家】消费金融大数据分析方法与金融大数据分析师养成
总结来说,金融大数据工程师,只是一个工程师还是远远不够的。他首先要对金融有所了解,其次要分析数据背后的本质,哪里风险高,哪里风控做的不好,最后形成决策。举例来说,中等风险的人群实际上是很能盈利的人群,因为他有一点风险,但又不是太高。那么这些人的风险如何管理,如何定价就是金融大数据工程师要做的。数据清理、分析你发现了什么、总结出什么规律、这个规律怎么提升、怎么样迭代,这是数据工程师最重要的五个核心。此外数据工程师还需要艺术思维和匠人精神,要科学性和艺术性相结合。 Q&A 提问1:第一个问题是,我发现数据要预测时面临的最大的困难是未来变化特别快,数据无法描述未来,比如英国脱欧和负利率等,场景非常难以描述。我是做推特分析的,语言变化特别快,怎么样去处理这样的问题。第二个是,在具体使用技术的时候,刚开始我们就是做大数据加加减减而已,然后我们可能再去做模型,甚至做知识图谱,您怎么来评价这些技术本身对整个金融大数据的推动也好,它的局限性。 杨子君:大数据领域最重要的不是寻找正确的答案,而是寻找正确的问题,就是大数据到底能帮我们做什么。像你说的推特,第一个问题是,是不是大数据能解决的,也许肯定是,你是最有权利有答案的。如果确实是大数据能解决的,现在的大数据是不是足够我解决这个问题,如果不能足够解决这个问题,很可能的情况下是我的认知不够,也可能是我的数据不够。所以我觉得,在大数据领域,对于数据工程师或者设计师来说特别重要的是,要会问正确的问题。 第二个问题是,是不是现在大数据的环境能解决。我现在觉得这是最重要的,我们的数据分析师、数据工程师和产品方向,都是想解决“正确的问题”。金融有一个好处,就是提供一种服务时,有数据不对称或者有道岔的情况,我可以通过提供这个服务去采集,这个过程是比较有意义的。就是说我可能不知道,但是我可以通过这种金融服务去采集。所以我觉得消费金融公司也好,银行也好,它一定要把这个理念灌输出去才能不断提升。 ? 提问2:未来哪一种社交数据会起到越来越大的作用呢? 杨子君:从信用风险的角度上来说,社交数据的权重不高。也就是说这个人去拿贷款,还不还钱,其实受周围的影响是蛮弱的,这是他核心的本质的问题。如果这个人的信用受周围影响很大的话,可以说这种信用是很不稳定的。实际上他并不是因为社交数据,他信用才不稳定的,而是因为实际上他本身与社交圈子里有一种共性他才会去社交。而我不想找这种共性,因为这种共性不是核心的,我要找的是核心规律,核心的这些人可能才会有帮助。但是在市场营销上,同样是社交数据,体现的价值不一样。一个人的购买行为,比较受圈子人的影响,因此这时社交数据很重要。回到信用风险这块,社交数据不是完全没有用,如果对你来说获取的非常容易,你可以做一些筛选。但是如果你说,我拿社交数据去放贷,那这个风险谁来承担?如果这个数据全都是非量化的,这就造成了很多操作风险,因为说不清楚是谁的风险、由谁来负责。 ? 提问3:中国的征信基本上是空白,而且是比较乱。你认为中国的征信什么时候能赶上美国的成熟征信体系的水平? 杨子君:其实现在中国的征信不是一个空白,中国人民银行征信中心是2004年就开始建的。现在中国有征信报告的,而且信息挺丰富的,差不多有3亿多人。我们发现这3亿多人,债务已经很高了,而且信用卡都有很多张。这些人更多是集中在北上广深,还有一些沿海城市,以及一些内陆城市。因此我国的征信有构架、有很多数据,只是在金融领域的应用还不是特别充分。这个征信中心每年新增的有征信的人,差不多是1个亿。可能征信在对公众的推广和教育还是不够。 ? 编辑:袁明嘉、陈龙 校对:辛洪录 ?编辑:张梦 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |