大数据分析 :利用向外扩展技术深入挖掘商业价值
到如今的2014年,我们的关注重点开始转向将数据交付给在业务流程中扮演操作角色的工作人员,或者利用数据在分析机制与应用程序或业务流程之间建立起直接关联。这意味着在正确的时间将正确的数据交给正确的使用者。对于大数据分析系统的构建者——通常采用我们之前所提到的各类技术方案——这意味着大家需要从原本企业领导者所关注的商务智能角度转向实际操作人员更为关注的功能性层面。 数据维度 商务智能工具利用大量分析模型与结构对大数据加以分析。在这种情况下,数据将被载入至一套多维临时性模型当中,并在这里以多种方式进行可视化处理。 您所在的企业是否已经在相关技术方案领域进行投资,旨在通过特殊设计 解决大数据层面的实际挑战? 根据Gartner公司的调查,几乎所有垂直行业都开始在大数据分析领域进行投资,其中教育、交通与医疗行业投入态度最为积极。 在多数情况下,这意味着支持实时或者近实时数据分析机制。最直观的例子就是仓储经理需要通过一份包含未来几个月库存预估情况的预测性报告来部署执勤人员,或者是医师根据病患整体追踪数据来判断当前患者是否会对某种药物产生不良反应。我们甚至有能力利用来自工业机器人的汇总数据来评估未来四千个小时内整套系统是否会出现运作故障。 大家不妨考虑以下几种用例: 用例:业务流程改进 大数据分析能够帮助企业以更为具体且准确的方式对自身业务状况进行审视,其中自然包括业务流程的生产效率。分析机制能够在数据可视化方案中以高亮效果标注出业务流程当中未达到既定标准的部分。 举例来说,在数据可视化技术的辅助下,企业用户可以从细节角度观察销售流程记录以及出货步骤,并了解其与其它业务流程及客户满意度之间的关系。对整个业务流程加以优化能够大大降低意外状况,从而保证业务合作关系的稳定发展。 用例:关键性业务应用程序强化 在与企业运营应用程序相结合之后,嵌入式大数据分析机制能够带来可观的商业价值。举例来说,一家企业可以将出货应用与分析信息相结合,从而在数TB规模的多年出货记录PDF文件当中整理出按时交货记录。这类数据也可以由来自外部数据源的信息构成,例如客户在社交媒体或者博客中表现出的抱怨情绪。 用例:改进医疗方式与成效 医疗系统往往会通过多种不同格式在不同位置保存我们的信息,这就导致分析机制往往很难甚至无法将此类数据作为单一信息集群加以处理。但在大数据分析机制的帮助下,我们如今可以将所有结构化与非结构化医疗数据收集起来,并将其作为单一集群供商务智能工具加以分析。这能够帮助医疗专家以预期疗效为基准对病患历史数据及疗法进行审视,从而大大提高其设计疗法成功治愈疾病的可能性。 用例:改善零售企业业绩表现 零售企业需要通过对特定市场及客户的深入了解来构建起属于自身的独特竞争优势。在这方面,大数据分析同样拥有极为可观的潜在价值。由其驱动的商务智能工具可以创建出对应模型,通过收集自庞大非结构化数据的预测性数据点来评估一款产品获得成功的可能性。 这类数据当中可能包含对现有客户群体的人口统计信息,并将其与过去曾经获得成功的产品作出模式比对,进而归纳出哪些气候模式能够确切影响到产品的市场接受情况(例如在气温极低的寒冬,羽绒服往往会大受欢迎)。这种思路旨在为零售企业中的核心决策者提供经过深度剖析的数据处理结论,从而了解应该对哪些产品进行大力宣传、优惠销售或者对其展示位置进行调整。 用例:改进交通系统 交通系统的核心诉求在于效率提升。举例来说,航空公司在设定航线时需要选择最平顺而且最有利可图的路线。在大数据分析机制的帮助下,决策者们可以利用包含有关键性预测指标、能够真实反映收集自外部数据源的数据集的历史信息评估哪些路线最具商业开拓价值。 大数据分析允许航空公司从政府机关手中收集到多年以来积累下来的飞行数据,其中包括起飞位置、乘客数量以及按时抵达记录等等。他们随后可以将来自其它航空公司的价格信息与这部分数据进行比对。在预测性数据中,他们还可以添加过去几年中潜在乘客对目的地的网络搜索次数,再加上这些地点在社交媒体中被提及的频率。通过将这些数据模型交付给商务智能工具,航空公司即可非常明确地找出可行而且能够切实带来收益的全新航线,甚至还包括未来机票的销售情况乃至建议售价。 为企业规划出发展道路 为了尽可能发挥大数据分析机制的潜能,大家需要将自身从传统商务智能与数据仓库体系当中解放出来。遗憾的是,创造商务智能方案的技术人员往往倾向于将传统商务智能机制强行纳入全新大数据世界(这显然有些格格不入)。这样一来,他们就会错失发挥这一新型技术巨大能量的机会甚至遭遇惨痛的失败。 除此之外,大数据技术市场目前确实呈现出相当严重的碎片化与复杂化态势。作为发展的早期阶段,每家厂商都在打造纯Hadoop类型的实施方案; 但时至今日,企业用户已经意识到自身特定需求必须由针对特定目的打造的数据库来实现,其中包括内存内、NoSQL或者其它一些专注于特殊功能的数据库技术,例如性能、大规模数据存储或者与公有云供应商的对接能力等。 将公有云作为大数据技术主机的方案既带来良好的发展机遇,同时也造成了不少难题。大数据技术通常采用以云为基础的多租户机制,此外也为用户提供能够运行在内部环境下的版本。尽管公有云在可扩展性与成本效益方面具备相当程度的优势,但企业仍然需要为其安全性及合规性保障操心费力。此外,当下的大部分数据都散布于其原本生成之处,且需要由托管在公有云内部的大数据系统加以逐一收集。 也就是说,大数据分析对于企业业务的可观助力极具价值、不容忽视。大多数企业需要就当下开始着手建立自己的大数据发展战略,或者是对几年前所打造的现有大数据战略作出更新及调整。为了达成这一目标,下面我们一同来看在企业内部实施大数据分析方面的几点建议:
大数据分析技术的价值在企业领域已经非常明确。充分利用良好信息的能力一直是摆在IT部门面前的重要难题与挑战。现在我们已经拥有了足以解决这一难题的工具,接下来要做的就是想办法使其为自己服务了。 原文链接:http://resources.idgenterprise.com/original/AST-0131518_BigData-Pivotal_v2.pdf?; 转自:51CTO,核子可乐译; 版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。 商务合作|约稿 请加qq:365242293?? 更多相关知识请回复:“ 月光宝盒 ”; 数据分析(ID :?ecshujufenxi?)互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |