UVA 11582 巨大数的斐波那契数列 (大数取模,幂取模,模的计算方
发布时间:2021-01-25 06:09:51 所属栏目:大数据 来源:网络整理
导读:Problem F: Colossal Fibonacci Numbers! The?i'th Fibonacci number?f?(i)?is recursively defined in the following way: f?(0) = 0?and?f?(1) = 1 f?(i+2) = f?(i+1) + f?(i)??for every?i?≥?0 Your task is to compute some values of this sequence.
Problem F: Colossal Fibonacci Numbers!The?i'th Fibonacci number?f?(i)?is recursively defined in the following way:
Your task is to compute some values of this sequence. Input begins with an integer?t?≤?10,000,the number of test cases. Each test case consists of three integers?a,b,nwhere 0?≤?a,b?<?264?(a?and?b?will not both be zero) and 1?≤?n?≤?1000. For each test case,output a single line containing the remainder of?f?(ab)?upon division by?n. Sample input3 1 1 2 2 3 1000 18446744073709551615 18446744073709551615 1000 Sample output1 21 250 一.大数取模,幂取模,模的计算方法1. (a+b)%n=(a%n+b%n)%n 2.(a-b)%n=(a%n-b%n+n)%n 3.(a*b)%n=(a%n*b%n)%n一.问题分析及解决 想啊,这个问题明明以前都做过很类似的问题的,F[i]%n,那么应该很自然的去想F[i]%n=(F[i-1]%n+F[i-2]%n)%n,接下来应该就会发现要求的东西只要知道前两个数的模就好了,那就很自然的转化到以前的找规律问题上来 #include <iostream> #include <cstring> #include <cstdio> using namespace std; typedef unsigned long long ull; const int maxn=1000+10; ull F[maxn*maxn]; int power(ull a,ull b,int t) { ull result = 1; while(b) { if(b%2) { result = (a*result)%t; } a = (a*a)%t; b/=2; } return result; } int main() { freopen("/Users/zhangjiatao/Documents/暑期训练/input.txt","r",stdin); int T; cin>>T; while(T--) { ull a,n,l; int flag=1; cin>>a>>b>>n; F[0]=0; F[1]=1; for(ull i=2;i<=n*n;i++) { F[i]=(F[i-1]%n+F[i-2]%n)%n; if(F[i]==F[1]&&F[i-1]==F[0]) { l=i-1; break; } } if(a == 0 || n == 1) printf("0n"); else cout<<F[power(a%l,l)]<<endl; } return 0; } (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |