加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

双向长短时记忆循环神经网络详解(Bi-directional LSTM RNN)

发布时间:2021-11-12 12:33:18 所属栏目:大数据 来源:网络整理
导读:副标题#e# 1. Recurrent Neural Network (RNN) 尽管从多层感知器(MLP)到循环神经网络(RNN)的扩展看起来微不足道,但是这对于序列的学习具有深远的意义。循环神经网络(RNN)的使用是用来处理序列数据的。在传统的神经网络中模型中,层与层之间是全连接

这里写图片描述

向后推算(Backward pass):

双向循环神经网络(BRNN)的向后推算与标准的循环神经网络(RNN)通过时间反向传播相似,除了所有的输出层 δ 项首先被计算,然后返回给两个不同方向的隐含层:

这里写图片描述

3. Long Short-Term Memory (LSTM)

循环神经网路(RNN)在工作时一个重要的优点在于,其能够在输入和输出序列之间的映射过程中利用上下文相关信息。然而不幸的是,标准的循环神经网络(RNN)能够存取的上下文信息范围很有限。这个问题就使得隐含层的输入对于网络输出的影响随着网络环路的不断递归而衰退。因此,为了解决这个问题,长短时记忆(LSTM)结构诞生了。与其说长短时记忆是一种循环神经网络,倒不如说是一个加强版的组件被放在了循环神经网络中。具体地说,就是把循环神经网络中隐含层的小圆圈换成长短时记忆的模块。这个模块的样子如下图所示:

这里写图片描述

图4 长短时记忆模块

关于这个单元的计算过程如下所示:

向前推算(Forward pass):

Input Gate:

这里写图片描述

这里写图片描述

通过上图可以观察有哪些连接了 Input Gate: t 时刻外面的输入, t-1 时刻隐含单元的输出, 以及来自 t-1 时刻 Cell 的输出。 累计求和之后进行激活函数的计算就是上面两行式子的含义了。

Forget Gate:

这里写图片描述

这里写图片描述

这两行公式的计算意义跟上一个相同,Forget Gate的输入来自于t时刻外面的输入,t-1时刻隐含单元的输出,以及来自t-1时刻Cell的输出。

Cells:

这里写图片描述

这里写图片描述

这部分有些复杂,Cell的输入是:t时刻Forget Gate的输出 * t-1时刻Cell的输出 + t时刻Input Gate的输出 * 激活函数计算(t时刻外面的输入 + t-1时刻隐含单元的输出)

Output Gate:

这里写图片描述

这里写图片描述

这部分就同样好理解了:Output Gate的输入是:t时刻外面的输入,t-1时刻隐含单元的输出以及t时刻Cell单元的输出。

Cell Output:

这里写图片描述

最后,模块的输出是t时刻Output Gate的输出 * t时刻Cell单元的输出。

向后推算(Forward pass):

这里写图片描述

Cell Output:

这里写图片描述

Output Gate:

这里写图片描述

Cells:

这里写图片描述

这里写图片描述

Forget Gate:

这里写图片描述

Input Gate:

这里写图片描述

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读