加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 业界 > 正文

2019AI产业智能市场,进展如何?

发布时间:2019-12-31 07:33:02 所属栏目:业界 来源:站长网
导读:副标题#e# 2019年即将过去,这两天很多朋友问我:今年AI到底是火了还是凉了? 然后我跟他们说:为了身体健康,别光吃凉的烫的,也吃点温的。 根植于互联网经济带来的一个又一个“风口记忆”,似乎如今国人已经习惯于把某种技术、产品,或者商业模式粗暴归类

一家轴承厂可以利用大数据检测和机器学习系统,对工厂设备的历史维修周期与故障率进行分析测算,从而结合机器视觉系统对设备进行监控,从而预测何时需要进行设备清洗、何时可能需要更换部件,从而让检修人员进行提前规划,最大程度降低工厂因设备故障导致的停工情况,从而达到设备中断工作时间降低了50%。

再比如一些制造业企业和工业园区,已经开始利用AI技术构建电力系统的智能监控与运维,预测企业的电力负荷情况,从而实行针对性供电,普遍可以达到企业整体购电成本下降30-40%的效果。

河南一家煤炭焦化企业,利用AI算法来进行焦炭质量预测和配煤比例优化,从而实现再不降低产品质量的前提下,达到解决成本每吨20-70元,一年可以节省数千万元成本。更重要的是,AI调参之后的配煤比例,可以让原材料出煤更加充分,极大降低了污染排放量,其社会价值远大于企业价值本身。

工业AI模型预测的产业特征,是每个行业都有非常高的特殊性。作为一种新技术,AI想要真正成为工厂的“大脑”,需要与具体行业充分接触、沟通,反复试错,最终走向产业融合。所以说,工业AI预测是很难具备大面积重复推广性的,与互联网产业传统的认知截然不同。但换个角度看,一家工厂很容易就因为AI的加入节省上千万的成本,一个看似不大的行业,就可以基于工业AI预测带来数十亿级别的价值增长。

这是一个需要慢下来、扎实下来的工程,也是“非火即凉”论者需要适应的新现实。

工业AI,依旧路漫漫

如果算报偿比率,工业AI绝对是所有“智能+产业”中的魁首,同时从产业周期上看,工业也毫无疑问是最后一个彻底完成智能化升级的产业。

无数细节和流程、漫长的产业链、上百年岿然不动的重型机械、与劳动者之间复杂难言的关系,种种因素限制着工业AI的发展速度。

如果为工业AI画一条增长曲线,那么在这条曲线的尽头,工业AI无非是要做两件事:彻底代替工人的工作,实现工厂的完全自动化。机械臂、工业机器人就是向这个目标前进;另一种是让AI的感知、推理与决策能力,发生在工业生产的核心部类当中,也就是让工业设备、生产线、工业产品获得智能能力。工业AI预测、大规模工业数据处理、工业BI,都是这个目标的初级阶段。

但在这两个终极目标之前,今天依旧能看到工业AI的阻力依旧非常清晰。

比如说,工业AI改造的核心,必须经历对工业生产核心设备进行改造。这一方面意味着巨大的成本压力,甚至是根本天方夜谭的成本。另一方面,AI走进工业需要一系列配套技术与解决方案的支持,这些基础条件今天并不成熟。所以说一方面工厂不会让AI改,另一方面AI也改不起。所以无论是质检还是预测,AI依旧在工业核心的外围转悠来转悠去。

比技术和成本困境更先遇到的,是工业和AI的相互不理解。我们经常会遇到这样的情况,一家AI公司到工厂走访后,能给出100多项自己可以做的智能化升级。而工厂专家和领导审核之后,可能最多留下两三项,甚至可能看着令人眩晕的技术列表,决定把AI拉黑。这种情况,一方面是AI技术从业者并不了解工业,尤其对工业所需的安全、效率、成本周期缺乏常识;另一方面工业专家也并不了解AI,经常将这门技术与机器人、数据可视化等技术划等号。

经常听到这种情况,工厂主见到AI公司负责人后有两种情况,一种是想让AI做一切事,另一种是拿AI当又一个骗人的“风口”。

可能相对幸运的是,如今的工业发展压力,正在倒逼着产业智能化升级发生。工业专家和工厂主也在持续提升对AI的认识。对于沟通层面的抱怨,在2019年已经少听到了很多。

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读