大数据可视化技术面临的挑战及应对措施
随着数据规模的增加,图表可视化的效率问题越来越凸显。目前,有些可视化产品开始采用WebGL借助GPU实现平行绘制。越来越多的数据可视化产品采用B/S架构,其性能一定程度上优先于浏览器;另外,由于跨终端需求越来越普遍,也对图表绘制提出了更多挑战。 图表表达能力 随着产生数据的来源增加,数据类型不断增加,数据使用者对于数据的交互需求越来越多,已有的数据可视化产品完全无法满足使用者的可视化需求,时常出现需要的可视化形式产品不支持或支持不够等问题。这就对于系统的图表表达能力提出了更高的要求,同时对于系统支持使用者的个性化定制提出了新的要求。 系统可扩展性 大数据对于数据可视化系统的扩展能力提出了新的挑战,系统的可扩展性将成为衡量一个大数据可视化系统的重要指标。 快速构建能力 大数据伴随着快速变化与增加的数据,如何帮助用户及时理解数据,发现问题,离不开数据可视化的快速构建能力,即根据使用者数据驱动的图表快速定制能力。数据在s级甚至ms级更新的情况下,有没有可能实现图表的秒级更新与快速定制。另外,图表定制后的快速共享与响应功能也将成为必要的系统功能。 数据分析 传统的BI工具主要集中在数据筛选、聚合及可视化功能,已经不能满足大数据分析的需求,Gartner提出了“增强分析”,数据可视化只有结合丰富的大数据分析方法,将数据的探索式分析形成一个闭环,才能实现完整的大数据可视化产品,有效帮助使用者理解数据。预测性分析是大数据的趋势,数据可视化有效结合预测方法,将有助于使用者的决策。 数据交互 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |