知乎CTO李大海:谢邀,来分享下内容社区的AI架构搭建与应用
下图是Jeeves及其学习平台架构。Jeeves通过容器管理GPU集群的资源,底层使用Docker来隔离GPU资源,并通过Kubernetes对Docker容器进行调度。并提供训练数据挂载,日志和模型的持久化的功能。同时Jeeves还会监测空闲资源并保证其及时回收,提高资源利用效率。 功能层面,Jeeves主要提供两类功能:一种是「笔记本」,用于在线交互式试验训练代码;另一种是「项目」,用于创建单机或分布式训练。 笔记本为算法工程师提供交互式体验和数据科学可视化的工具,用户可以通过浏览器快速迭代优化训练代码。对于不习惯使用浏览器或者不方便使用浏览器的用户,Jeeves还提供了ssh notebook的功能。 项目分为单机训练和分布式训练两类。单机训练使用一台独立服务器执行训练任务;而分布式训练根据用户申请的资源用量,将任务合理拆分后,交由对应集群执行。项目启动后,Jeeves 会提供 TensorBoard,辅助用户掌握训练过程。 总结 以上是知乎最近在 AI 应用实践中逐步沉淀出来的一些基础框架和提效平台。AI 应用本质上是能够对海量数据进行高效应用的前沿计算机算法系统,因此,过去常规计算机系统在数据规模和业务请求量增大到一定程度后,会遇到的各种问题,AI 应用也同样会遇到。如果解决这些问题,就需要有良好的架构设计,否则再好的数据和模型,也都会受制于系统的计算能力和吞吐能力,不能发挥数据和模型完整的表达能力。所以,在工业界真实的生产环境中,AI 应用必须同时兼顾数据、算法和架构三者的投入。作个不太适当的比喻,这三者的关系就好像食材、菜谱和厨具,要想把 AI 应用的用户体验这道菜做的色香味俱全,三样东西每样都要做好、做足、做精。 通过这些框架的落地和应用,我们也希望知乎这个内容社区,能够在更多的产品细节上,轻松使用各种 AI 技术,成为一个人与技术、人与机器、人文与技术有效融合「智能社区」。 最后,打个广告,欢迎更多对 AI 技术有兴趣和热情的同学加入我们,加入知乎,一起做些更有趣、更有挑战性的工作。我的分享就到这里,谢谢大家。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |