基于大数据的风险控制,大数据风控并不完美吗?
发布时间:2018-12-24 05:08:23 所属栏目:移动 来源:链门户
导读:济宁站长网(http://www.0537zz.cn)了解到需求促进创新,2008年开始,伴随着数据处理需求的增加和大数据技术的发展,商业银行等传统金融机构日渐意识到数据资产的重要性,并逐步将程控交换系统转换成IP网络为主的大数据风险控制系统。由此,大数据风控逐渐
济宁站长网(http://www.0537zz.cn)了解到需求促进创新,2008年开始,伴随着数据处理需求的增加和大数据技术的发展,商业银行等传统金融机构日渐意识到数据资产的重要性,并逐步将程控交换系统转换成IP网络为主的大数据风险控制系统。由此,大数据风控逐渐成为金融机构创新传统金融风控模式的变革利器。
另外,日均2EB级别的海量数据的产生,让蚂蚁金服为代表的互联网金融企业和中诚信为代表的征信机构开始在大数据风控领域崭露头角,围绕自身互联网平台和业务系统,打造了诸如“蚂蚁大脑”、“京东天机”的大数据风控系统。然而,2013年以来,随着互联网金融的快速发展,以P2P为代表的互联网金融企业如雨后春笋般涌现。具体而言,自2007年我国诞生第一家P2P平台起,P2P平台在快速发展的同时频频暴露出跑路、停业、提现困难和经侦介入等问题。大部分P2P平台均宣称,自家平台是采用先进的大数据风控技术,严进严出,基本能保障不良贷款率在P2P行业较低的水平。然而,P2P行业的风控现状却总是事与愿违。根据网贷之家发布的《2015年P2P网贷行业年报》显示,2015年全国正常运营的P2P平台总数2595家,累积停业及问题平台数量高达896家,占比34.53%。问题平台总数高达2014年的3.26倍。因此,P2P风控之殇从一个侧面反映出大数据风险控制存在有效性不足等问题。
大数据风控美中不足 众所周知,大数据风控是指利用大数据技术对交易过程中的海量数据进行量化分析,进而更好地进行风险识别和风险管理。大数据风控的核心原则是小额和分散,即预防资金相关者过度集中。小额的设计原则主要是针对海量数据构成的统计样本,尽量避免出现统计学中的“小样本偏差”。分散的设计原则主要是通过分析借款主体的人口属性、商业属性、行为属性和社交属性等数据来建立大数据风控模型。
首先,大数据风控技术无法解决数据孤岛问题,即数据的开放和共享问题。目前,政府、银行、券商、互联网企业和第三方征信公司掌握的信息难以在短时间内互联互通,从而形成一个个信息孤岛。当交易在不同金融机构之间进行时,数据孤岛导致了信息的不对称、不透明,带来了大量的多头债务风险和欺诈风险。金融信贷行业若想利用大数据风控技术提升风控水平,就必须打破数据孤岛,解决信息不对称和信息获取不及时的问题。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |