谷歌宣称首次实现量子优越性,IBM“不服”,中国同行咋看?
此次,谷歌量子AI团队制备了一块包含54个量子比特的超导量子计算芯片,并将其命名为Sycamore。不幸的是,其中一个量子比特坏掉了,所以可用的量子比特只有53个。不过因为坏掉的量子比特在芯片的边缘,基本上不会影响最终实验结果。 这块超导量子芯片基本上汇聚了谷歌量子AI团队这几年所发展的所有先进的实验技术,其中最突出的两项技术是倒装焊封装技术和可调量子耦合器。倒装焊封装技术是一种芯片互连技术,通过倒装焊,可以实现二维排布量子芯片的制备。可调耦合器的作用是调节量子比特间的耦合强度,当我们想让比特间发生耦合实现多比特门时,可以将耦合强度调大,但是当我们不想让比特间发生耦合时,可以关掉耦合器。 图3 Sycamore芯片的结构和实物图 可调耦合器的突破使得比特间的串扰错误得到有效抑制。从谷歌的基准测试来看,Sycamore芯片在进行并行量子门操控时,还能保持99.84%精度的单比特门、99.38%精度的两比特门以及96.2%精度的读出,综合性能代表了目前超导量子计算的最高水平。 为了说明“量子优越性”,谷歌与目前世界排名第一的超级计算机Summit进行了性能比对。在Sycamore上进行53比特、20深度的量子随机线路采样,200秒约可采样100万次,并且最终结果的保真度预计有0.2%;作为对比,谷歌预计超算Summit要得到保真度为0.1%的结果,需要耗费1万年。基于此,谷歌宣称实现了“量子优越性”。 三、“量子优越性”工作的争议 实际上,“量子优越性”代表了两个方面的竞争,一方面量子芯片的比特数和性能不断扩张,在某些问题上展现出极强的计算能力;另一方面,经典算法和模拟的工程化实现也可以不断优化,提升经典算法的效率和计算能力。所以,如果能够提升经典模拟的能力,那么谷歌的量子设备有可能就无法打败最强超算,从而“称霸”失败。实际上这是极有可能的,因为谷歌也无法保证他们在做经典模拟时已经达到了最优,包括他们所使用的薛定谔-费曼算法,以及对超算工程化实现的优化。 有趣的是,IBM是第一个跳出来表示“不服”的。IBM在10月21的arXiv上论文“Leveraging Secondary Storage to Simulation Deep 54-qubit Sycamore Circuits”中指出,谷歌对随机量子线路的经典模拟优化得并不好,如果采用内存和硬盘混合存储方案,模拟53比特、20深度的量子随机线路采样,仅需2.5天。IBM还宣称这只是他们保守的估计,“一万年太久,只争朝夕”。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |