跨专业自学NLP,这个90后撸出了开源类库HanLP,已在GitHub收获1.5W星
谈到 NLP 现在发展中的挑战,何晗表示,NLP 现在最大的问题是难以表示世界知识,举个例子,每个人都有一套对物理世界的认识,但计算机只有一些符号语料。“人们都说百闻不如一见,目前的 NLP 系统别说见了(机器视觉),连闻都很少闻(语音处理)”。 但就学界的前沿动态而言,在模型结构的探索上 AutoML(自动设计神经网络),以及在知识工程上的自动构建知识图谱, 都是未来可预见的发展趋势。 就工业界而言,未来机器学习工程师的岗位反而会减少,因为神经网络可以自行设计神经网络, 就不需要这么多工程师手动设计了。到时候,软件开发将进入 2.0 时代,不用再写代码,而是标注数据。标注数据丢给神经网络学习模型,模型的结构也是神经网络自动探索出来的,这个模型用来解决实际问题。软件工程师不需要写一行代码,或者说,他们标注的数据就是他们的代码。神经网络是他们的编译器,训练出来的神经网络是他们编译后的程序。正如编译器可以编译编译器一样,神经网络也可以训练神经网络。这就是未来最有潜力的技术。 写在最后现在读到博士了,何晗的生活依旧简单,除了日常学习,他最爱的还是动漫和游戏。 维护 HanLP 之外,何晗还业余经营着一个名为“码农场”的博客,用于自己的课程笔记分享。由于太忙,这几年“码农场”的更新频率已经降到了以“年”为单位,不过,日常仍有数千粉丝来这里翻阅资料。 从该博客的一隅,或许可以一窥何晗的另一面。 在“码农场”的资料介绍处,何晗称自己是一个算法初心者。大二时兼职开发 HanLP,何晗常常一个人坐在教室忙活,同学们完全不知道在干什么,“大部分女同学认为我就是个码农,修电脑的那种;有的男同学觉得我很 low,有的觉得我很酷“,何晗从来不解释,他觉得做自己就好了。 他亦是一位算法坚守者,从兼职接触到如今锁定研究方向,他一直在自己喜欢的领域保持专注。采访最后,何晗告诉我们,毕业后,他会选择继续扎根学术。 【编辑推荐】
点赞 0 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |