加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 创业 > 正文

用户增长:一种基于策略的登录指标——日净增登录

发布时间:2020-06-08 01:09:54 所属栏目:创业 来源:互联网
导读:副标题#e# 本文作者依据工作中项目实践的所思所想,并结合案例等分享了关于“日净增登录”数据相关的知识,供大家一同参考和学习。 一、什么是「日净增登录」? 1. 指标提出背景 日净增登录,来源于我今年在登录率提升专项中的实践运用,并提出的一个数据指

这里的差值在实际的业务应用场景,为了排除自然波动的影响,用目标值与自然值之间的差值来计算会更合适也更简单。因此涉及3个概念:

  1. 自然值,只要业务在自然情况下登录率趋势稳定或有规律可循,便可以从历史数据中进行预测;
  2. 目标值,可基于目标登录率进行计算得出;
  3. MAU,做为核心指标,一般在业务中也可预测或者已经预测;

将上述3个值代入step1中的公式:

日登录率 = a * MAU中的当月登录用户数 / MAU

得到

差值X(策略干预下的净增登录)

=目标「MAU中的当月登录用户数」 – 实际「MAU中的当月登录用户数」

=MAU / a * (目标登录率 – 自然登录率)

Step3.将差值拆分成「日净增登录」

那么为了step2中的“差值X”在目标月达到指定量级,拆分到每天平均需要多少的“每日差值x”即“策略干预下的每日净增登录”才行呢?

这里我们假设活跃次月留存率为b,则今天的“每日差值x”在目标月也生效的概率为:

b^n

n代表今天所在月与目标月的月数间隔(如今天是5月,目标月是6月,则n=1)

于是:

差值X = x * 30 * ( b^0+b^1+b^2+….+b^n)

其中b^0+b^1+b^2+….+b^n为一个常数,为方便,命名为c

则:

每日差值x = 差值X / (30 * c)

由于:

日净增登录 = 日干预净增登录(每日差值x)+ 日自然净增登录

于是最终得到「登录率」推导「日净增登录」的公式为:

日净增登录 =MAU * (目标登录率 – 自然登录率) / (30*a*c) + 日自然净增登录

其中:

  • MAU 为预测的目标月活跃用户数;
  • 自然登录率为不做策略时预测的登录率;
  • a = 月平均登录天数 / 月平均活跃天数;
  • c = b^0+b^1+b^2+….+b^n , b为活跃次月留存率;
  • 日自然净增登录为不做策略干预下的日净增登录,可通过历史数据计算得出

从公式看出,如果想反推,即由「日净增登录」推导出「登录率」,带入相应值即可。

注:以上推导过程基于了一些假设和限定,主要包括

(1)登录率的变动不影响活跃;

(2)自然情况下登录率趋势稳定或有规律可循,即可预测;

(3)活跃次月留存率、「月平均登录天数/月平均活跃天数」、在历史数据中足够稳定。

三、「日净增登录」在业务中的应用

前面阐述了「净增登录」的定义、优势、推导过程,那在具体的业务中的它应用流程是什么呢?

在这里回顾下前面的3个疑问:

  • 疑问1:我究竟要拉多少登录用户才能在Y月达到某个登录率目标值?
  • 疑问2:我预计每天可以拉XX的登录,那到了Y月的时候登录率会是多少?
  • 疑问3:我拉了XX万的登录用户对Y月的某个登录率目标值究竟贡献了多少?

带着疑问我们一起来看下「日净增登录」的应用框架,供大家参考。

注:里面所使用的数据均为假数据,不代表业务数据
用户增长:一种基于策略的登录指标——日净增登录

1. 收集数据确定「日净增登录」值

疑问1和2均可在这一步得到解答。

【疑问1】我究竟要拉多少登录用户才能在Y月达到某个登录率目标值?

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读