加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 教程 > 正文

七夕:大数据分析看如何成为美人

发布时间:2018-08-28 15:22:56 所属栏目:教程 来源:佚名
导读:副标题#e# 技术沙龙 | 邀您于8月25日与国美/AWS/转转三位专家共同探讨小程序电商实战 这篇文章探讨的是女性吸引力,但没有通常看到的照片分析之类的东西。相反,我们采用过去的女人图片,分析她在男同胞们头脑里产生的反应。 我们将展示以下显著的现象: 公
副标题[/!--empirenews.page--] 技术沙龙 | 邀您于8月25日与国美/AWS/转转三位专家共同探讨小程序电商实战

这篇文章探讨的是女性吸引力,但没有通常看到的照片分析之类的东西。相反,我们采用过去的女人图片,分析她在男同胞们头脑里产生的反应。 我们将展示以下显著的现象:

公正性警告:我们将把女性作为客观对象来讨论,不惜笔墨。本文的目的是分析OkCupid网站的数据,没有一点点客观对象化是不可能的。不久会轮到把男性作 为客观对象来分析展示给大家。按照惯例,本文中没有任何分析(名人的例子除外)是我个人的观点。所有数据均是从实际用户活动中收集的。

1. 咱们从头开始。

所有的人,尤其是男人们花费大量精力搜索、浏览和联系我们最热门的用户。正如以前提到的,受欢迎女性收到的交友信息大约是相貌平平女性的4倍(备注:原文用 4X表示),是丑女收到的25倍(备注:原文用25X表示)。深陷信息中会把网站用户,尤其是女性吓跑。因此,我们必须分析和重新指导这个趋势,以免 OkCupid成为sausageparty那样的网站。

几乎每隔一段时间,我们都会运行下面这样的分析图,显示以5000名女性为例,按吸引力排序,在上一个月中能收到多少信息。

七夕:大数据分析看如何成为美人

这 些图按种族、位置、年龄、档案完整程度、登录活跃程度等做了调整——这些人之间唯一有意义的不同点是她们的长相。运行许多这样的图之后,我们开始问自己: 还有什么原因导致X广泛分布,尤其是占了图中一半数量的“长相高于平均水平”人收到的信息量有多有少。难道仅仅是随机现象?

下面是这个女性的分析:

七夕:大数据分析看如何成为美人

她得到的关注比下面的女性要高:

七夕:大数据分析看如何成为美人

尽管根据我们的用户反馈,她们都是美人。

2. 美丽(7分)并不相同

为了解释这种现象,第一步就是用数学方法来区分吸引力的程度。 比如,采用经典的10点分来作为“长相”的满分,如果一个人的评分为7,这可能是因为每个看到她的人都会这样想:她非常可爱。

七夕:大数据分析看如何成为美人

但是极有可能出现的却是下面这种情况:

七夕:大数据分析看如何成为美人

如果我们只知道她的评分为7,是没法看出她属于上面哪一类的。也许对于有些人来说假设的满分美女是不同凡响、引领潮流的,而其他人认为美女是享乐主义的。谁知道呢? 事实证明,这种分布的观点非常重要。

3. 名人照片:抛砖引玉 和 说明

让我们来看看一些著名人物的评分的分布情况是什么样的。我猜想,比如说女演员克里斯汀.贝尔的长相评分大致是这样的:

七夕:大数据分析看如何成为美人

贝尔小姐被大众认为是美女,但她的分数看上去并不像是一个超级名模或者什么顶尖人物。她可能在“非常美”的评分范围只能得到几票,大多数的票数在“非常有吸引力”左右,没人把她的票投在图表左端的“不吸引人”上。

相比较而言,梅根·福克斯可能得到这样的评分:

七夕:大数据分析看如何成为美人

图表最右边,可能有很多的帅哥觉得她是最性感的。在最左边,少数人看过她的电影。

与贝尔小姐不同,福克斯女士让人们产生了强烈的反应,即使有时这种反应不是正面的。

4. 现实生活的人们

现在让我们回头再来看前面的两个真实用户,这一次用她们的图表。 OkCupid网站按从1到5星级评价长相,所以其它讨论都以此为根据。本文展示的所有用户都是慷慨的女性,她们有足够信心允许我们在网站上做分析,感谢她们。好了,这里有:

七夕:大数据分析看如何成为美人

正如你看到的,尽管上面这两名女性的吸引力评分非常接近,她们收到的投票 模式却有所不同。左边的评分显示人们有所共识,右边的评分显示了意见分歧。

再细致一点说来就是:

当我们开始用其他”长相和侧脸相似,但收到的交友信息数不同”的人来配对时,这种模式一次又一次呈现。收到消息少的女性通常被认为有一贯的吸引力,而收到消息多的女性往往在男人看来吸引力有分歧。下面再举几个例子:

七夕:大数据分析看如何成为美人
七夕:大数据分析看如何成为美人

男人对女性长相越有分歧,就有越多的人喜欢她。 我 们感觉似乎能发现什么,所以,作为数学书呆子,穿上运动裤。然后做了一些分析。 我们的第一个结论是:对女性评分数和她收到的交友信息数量做标准差比较,发现,男人们对女性长相评价的分歧越多,就有越多人喜欢她。对此绘制的喜好偏差与 收到的交友信息的关系曲线如下,再举一些例子。

图中沿曲线标识的女性在吸引力排名中大约为前80%。

七夕:大数据分析看如何成为美人
七夕:大数据分析看如何成为美人

这得用一点算术,而且很难用简单的折线图来解释。基本原理是:根据女性得到的投票数,用一个公式来预测女性能得到多少关注量,关注量的计算是基于曲线上的投票数。用这个公式,我们可以把“男人认为女性长得怎么样”翻译成“她能得到多少关注”。

我们得出的公式看上去不透明,但是用它计算,就会看到人们有趣的观点,以及男人们会向哪些女性示好。

如果你对代数感兴趣

我们以43000名女性的数据作为样本用回归法分析。 为保证前提一致,所有这些女人是异性恋, 年龄介于20和27岁之间,而且住在同一个城市。本文中给出的公式是降低m3,使其p值非常接近1后,第二次回归得到的最佳结果 。

Msgs是观察期内女性收到消息数量。常数k反映了她在整个网站的活动水平。对于这个方程, R2 = .28, 这在实验或问题研究中并不是一个大数字,但应用在真实的社会环境中非常好。

需要搞明白,最重要的是ms代表男人对她长相评价的投票,以此算出她收到的交友信息数曲线,譬如:

七夕:大数据分析看如何成为美人

那些前面带正号的投票数(ms):表示男人会发信息给女性,前面带负号的:说明要减去信息数量。这个公式告诉我们的有以下信息: 认为你火辣(hot)的男人越多,你收到的信息就越多。

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读