加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 教程 > 正文

这样解释数据科学,奶奶辈也听得懂!

发布时间:2019-07-19 10:36:51 所属栏目:教程 来源:读芯术
导读:副标题#e# 数据科学、大数据、数据湖、人工智能、数据挖掘、机器学习、深度学习、商业智能、商业分析近些年,众多的文章和言论都探讨了上述术语。像往常一样,当某样东西变得流行时,它的概念、定义和限制就会逐渐消失。 如果你注册了Linkedin还经常使用的

人工智能领域包括几个分支,它们目前正处于鼎盛时期。将其可视化后就能准确地知道我们在说什么:

这样解释数据科学,奶奶辈也听得懂!

5. 数据挖掘

数据挖掘是一项使用数据探索技术发现一些有趣(而不明显)的模式的技术。

什么模式?例如:根据某些特征对数据进行分组的方式、异常检测(罕见值)、某些观察值与其他值之间的相关性、某些事件的连续性、行为的识别等。

这样解释数据科学,奶奶辈也听得懂!

数据挖掘使用机器学习等方法。

6. 机器学习

机器学习是人工智能最重要的分支。它的任务是:研究和开发技术,使机器能够在没有人类明确指令的情况下自学,从而执行特定的任务。

机器将从输入数据集(称为样本或训练数据)中学习,根据算法检测到的模式建立数学模型。该模型的最终目标是对之后来自相同数据源的数据进行(准确的)预测或决策。

传统的机器学习主要有两种类型:

  • 监督学习:当训练数据被“标记”时。这意味着,对于每个样本,我们都有与观察到的变量(输入)和我们想要学习预测或分类的变量(输出、目标或因变量)相对应的值。在这种类型中,我们找到了回归算法(预测数值的算法)和分类算法(输出仅限于某些分类值时)。
  • 无监督学习:当训练数据没有标记时(我们没有目标变量)。这里的目标是找到某种结构或模式,例如对训练样本进行分组,这样我们就可以对未来的样本进行分类。

传统的机器学习已经让位于更复杂或更现代的学习类型:

  • 集成方法:基本上是几种算法联合使用,将它们的结果结合起来以获取更好的结果。尽管XGBoost凭借在Kaggle的胜利而得名,但最常见的例子还是随机森林。
  • 强化学习:机器通过反复试误来学习,这得益于它对周围环境的迭代做出的反馈。你可能听说过AlphaGo或AlphaStar(在《星际争霸2》中实力碾压人类)。
  • 深度学习:皇冠上的宝石……

7. 深度学习

深度学习是机器学习中的一个子领域。

这样解释数据科学,奶奶辈也听得懂!

它基于人工神经网络的应用。人工神经网络是一个计算模型,具有分层结构,由相互连接的节点共同工作而形成。这个名字的灵感来自(或试图模仿)大脑的生物神经网络。

这样解释数据科学,奶奶辈也听得懂!

虽然神经网络已经被研究和使用多年,但该领域的进展一直很缓慢;主要是限于计算能力不足。尽管深度学习近些年来取得蓬勃发展,这多少要归功于神经网络训练采用了CPU,但其开始不过才十年。

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读