加入收藏 | 设为首页 | 会员中心 | 我要投稿 西安站长网 (https://www.029zz.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

AI时代:人人都要培养关于AIQ 的这几个技能

发布时间:2018-10-28 12:03:09 所属栏目:大数据 来源:经济观察报
导读:副标题#e# 《经济学人》去年出了一期很经典的封面,封面里将全球各大高科技平台企业如谷歌、亚马逊之许描绘成正在采油的钻井,寓意很明显,在数字经济时代,大平台正在开采数字化的石油大数据,而开采出来的大数据则用于人工智能(AI),因为AI会是数字化时

这也是培养AIQ的第二个要点,不用过早担心AI是否会取代人类,因为现在的AI发展距离通用机器智能(AGI),距离赶上人类的智能还很远。数字工程师现在要花90%的时间用于处理数据,把非标的数据变成机器可以读懂的结构化数据,只有10%的时间用在推进AI的发展上。因为AI只听得懂数字,无论是图像还是文字的识别,都是找出它们的数字属性,然后让AI做最擅长的事:快速地计算和找到准确的关联。

培养AIQ的第三点,需要理解人与现在的AI之间到底有哪些优势和劣势。

十几年前,当时担任美国国防部长的拉姆斯菲尔德曾经特别就美军在伊拉克面临的风险做过一个四个象限图的分析,分别是美军知道美军自己知道的风险(已知的已知);美军知道美军还没有掌握的风险(已知的未知);美军并不知道自己已经掌握的风险(未知的已知),以及美军根本不知道自己还不知道的风险(未知的未知)。

如果以美国掌握的全球恐怖主义信息为例,第一种风险是美国知道本拉登建立了基地组织;第二种风险是美国知道自己并不知道本拉登基地组织的目标到底是什么;第三种风险是CIA已经知道与本拉登相关的人曾经在美国学习飞行,并且再次入境美国,但是并没有就这一重要信息做出分析,因此美国的决策者并不知情;第四种风险则是美国根本无法预测2001年纽约的911事件会发生。

同样,套用这四个象限分析,也可以清晰地分辨人与机器之间的差别。

应用场域最广的领域是“已知的已知”领域,即有着大量数据,而我们也很清楚知道如何做出好的预测的领域,比如说防欺诈、医疗诊断等等。这些领域AI已经大规模取代人,因为机器从大数据中找出相关性的速度比人要快得多。

如果反思一下2008年金融危机,首要问题是为什么评级机构当年没有看到次级债(CDO)的风险。答案并不是因为评级机构当时没有充足的数据。症结在于他们设计的风险模型中并没有考虑到不同市场价格变动的相关性,比如纽约和芝加哥房价同时下跌给CDO带来的风险。有了AI就不再会出现这种问题,因为可以从更多维度对数据做出分析。“已知的未知”领域,将仍然是人的领地。这个领域并没有大量数据,无法帮助AI做出好的预测。相反,人却能利用小数据来举一反三。当然这也恰恰是机器学习发展非常快的领域,如果机器能够学会如何像人一样学习,智慧会进一大步。

第三个领域,也就是“未知的未知”领域,人和机器都束手无策。黑天鹅就是一种未知的未知,人和机器都很难预测。原因很简单,AI从本质上仍然是利用历史数据预测未来。如果某个新物种,从来就没有人见过,又何从预测呢?比如说,共享音乐Nap-ster给CD行业带来的毁灭性打击就很难预测。

最后一个领域,就是“已知的未知”领域,AI和人一样容易犯错,而应用AI会带来更大的风险,因为AI可能飞快地将错误放大千百倍,让人措手不及。所谓已知的未知,意思是我们已经能做出了预测(不管是人还是AI),但是却并不知道背后真正的原因,甚至有时候以为自己知道原因,其实却是错的。

(编辑:西安站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读