一文讲透商业智能BI 到底是什么|推荐收藏
最终业务人员通过一次或者多次的维度和指标图表构建,逐步形成了一种比较可靠的、固化的分析模型。这个阶段的业务人员不再是被动接受来自图表中反映的信息,而是通过"异常"数据来定位到背后的一个业务问题,数据和业务在这个层次开始有了直接对应关系,这时可以利用数据图表之间的逻辑性关系寻找解决方法,提高企业的经营效率。 3.业务建模分析 业务建模分析通常是由精通业务的业务人员提出,通过合理的建模找出业务中可能存在的问题,将其反映在可视化报表上,并最后要回归到业务,形成决策并不断优化的一个过程。业务建模简单来说也可以理解为一种业务分析的逻辑思维模型,只是用数据、图表化的方式将它们有效组织起来去验证我们对业务分析的逻辑判断。它可由一个或多个图表组成,也可通过一组或多组数据图表支撑,依据企业的业务模型来确定。 业务建模分析区别于前两点,它是一种更深层次的业务数据的主动设计和探索分析。需要更加深入业务,围绕一个一个业务分析场景展开,对业务的认知要足够深。这里需要注意的是具体的分析场景很难由专业的BI开发人员来提出。业务分析建模需要由专业的业务人员且具备数据分析思维意识的人员来推进和主导,再辅助合适的数据分析、挖掘或统计工具,这样商业智能BI的价值才能在企业得到充分的发挥,数据的价值也才会得到充分的体现。 四、商业智能BI的工作原理 那么BI到底是如何工作的?商业智能BI是一个复杂的技术集合,它包含ETL、DW、OLAP、DM等多个环节(这里的几个名词后文会有详细解释)。如图所示,简单的说,就是把交易系统已经发生过的数据,通过ETL工具抽取到主题明确的数据仓库中,OLAP处理后生成Cube或报表,透过Portal展现给用户,用户利用这些经过分类(Classification)、聚集(Clustering)、描述和可视化(Description and Visualization)的数据,支持业务决策。 1.ODS(Operational Data Store) ODS是数据仓库体系结构中的一个可选部分,ODS具备数据仓库的部分特征和OLTP系统的部分特征,它是“面向主题的、集成的、当前或接近当前的、不断变化的”数据。一般在带有ODS的系统体系结构中,ODS都设计都有如下特点: (1)在业务系统和数据仓库之间的数据过渡层:如果业务数据来源比较复杂,一般采用构造ODS的方法来实现收集当前需要处理的数据。如下述数据来源:①业务数据库种类繁多。业务交易系统使用了不同种的数据库,如DB2、Informix、Oracle、SQL server、文本等;②不同的应用系统、不同的地理位置;③订阅数据源;④批量还原非传统数据库数据……等等。用于存放从业务系统直接抽取出来的数据,这些数据从数据结构、数据之间的逻辑关系上都与业务系统基本保持一致。 (2) 保存当前或接近当前的细节数据,以供查询或ETL检错使用。 (3) 数据存储周期性。ODS中存储的数据都是临时的,每次ETL之前都要清空ODS中存储的数据。 2.ETL(Extract Transform Load) 操作型业务数据库(DB)到数据仓库(DW)的过程称之为ETL,它实现数据的抽取,转换及装载工作。①抽取:将数据从各种原始的业务系统中读取出来;②转换:按照预先设计好的规则将抽取得数据进行转换、清洗,以及处理一些冗余、歧义的数据,使本来异构的数据格式能统一起来;③装载:将转换完的数据按计划增量或全部的导入到数据仓库中; 3.DW(Data Warehouse) 数据仓库 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |