5G MEC 的本质是“联接+计算”
随着计算机网络的发展,节点将向“转发+ 计算+存储”的方向演进,各个 MEC 之间的能力将进行共享和调用。未来的 10 年,云计算和边缘计算是循环促进的,边缘计算将会占据50%的市场空间,而 5G MEC是其中主流的一个方向。 通信运营商的“根据地”是“联接和网”。MEC 中的数据面要把这些优势用起来。UPF 和MEC 虽然逻辑上可分可合,但 MEC 的数据面和UPF 合而为一将拥有最佳转发性能和性价比(减少一半消耗)。反之,没有“联接感知优化和第一跳及时处理”和“分布式成网”的优势,通信网的边缘计算和云计算就会趋同,但云计算将更多地发挥内容优势。 如果仅依靠之前的基础设施,变成物理机房和网络部署拓扑争夺战,则站点联盟和行业等都会挖掘自己在各个区域的站址,通信网的边缘计算站点只是众多站点的可能性之一。 03 5G MEC中的关键技术 5G 业务的到来带来了以下四大挑战。 ? 超低时延。促使节点下沉/应用本地化,减少网络拓扑。 ? 高速移动连续性。促使MEC 之间的多联接连续性考虑。 ? 大带宽。促使转发分流的进一步优化。 ? 企业数据本地化处理。大量视频等数据本地处理,必要时再分流到宏网处理。 边缘计算的价值场景从移动网加速、园区、电力、VR/AR、工业互联网、车联网等展开。本文重点聚焦关键技术,而不再展开场景组合应用,具体关键技术如下。 (1)极致联接中感知内容分类进行转发、分流、加速 从 2014 年起,4G 开始不断对 MEC 的按内容分类进行转发/分流/加速的能力进行商用。由于5G 的大带宽,转发/分流/加速进一步提升了 10X 以上的高通量需求。从 4G FPGA 卸载,走向 5G 高速转发芯片,形态和规格因应用不同而系列化, 流量从 10 Gbit/s到 600 Gbit/s。 用户面感知内容分类,进行卸载和分流,并根据内容分类,进行cache、视频/游戏加速、起播加速、TCP/UDP 加速。 WTTX 固定无线接入场景,用 5G 大带宽接入替代固网接入成为可能,组播转单播是 MEC 与IPTV 网络对接所需的能力之一。Wi-Fi 场景冲突和干扰较多,5G 接入替代 Wi-Fi 也需要MEC 在园区/场馆等场景提供一些便捷功能。 围绕“感知联接”做移动网加速,提供高带宽、高体验、接入可移动的边缘计算节点。关键技术难点在于能够体现厂商高水平的是 200 Gbit/s 以上的实时高带宽加速、结合业务体验的综合加速方案等. 学术进展和挑战包括:在内容感知分类有方面的方法(准确性待提升)、加速的方法(实时高带宽有挑战、各场景综合有效性有不稳定)。 2014?2019 年的试验数据证明:游戏时延可加速 40%、视频下载速率提升5%~47.41%、视频往返时延降低 19%~32%、视频拖动等待时延降低 12%~61%;商用网络要控制各场景的可增益性。 (2)极致联接中的移动连续性 由于 5G 会使用部分高频率频段,基站覆盖范围有可能缩小,建网初期热点孤岛需要和 4G整网互助,连续性更加重要。跨越基站的连续性需要核心网配合。 极致联接中的 4G+5G 双联接、多链路聚合(如宏网络+Wi-Fi、固移融合多接入)和可靠性协议层 HRP(high reliability protocol)是其中的关键 技术。App 的跨节点互动也很重要。发挥业务层 和链路层的互动,才能控制好多链路传输的效果。 MEC是衔接业务层与管道层的节点,需要做好跨层互动。本地节点跨层优化,多个节点统一切换调度/保证连续性以及动态触发与 5G 核心网的流策略、控制面管理互动调配最优路径和资源都是 MEC 可用的手段。 车联网是其中一种典型应用,不仅多接入联接连续,车厂 App 在途径 MEC 中的按需动态部署和迁移也非常关键。3GPP 定义了车联网四大场景和相应的需求。 无人机快速移动也会有此类要求。关键技术难点在于:最优路径调度、切换和预接续提前预判。学术进展和挑战包括:定位/轨迹预测算法等准确度和精度通常在若干米的范围,需要更精准。 (3)极致联接中的确定性网络 行业数字化与实时流媒体场景对网络的确定性提出更高要求,包括时延与抖动。MEC需要帮助做业务感知和差异化队列调度、缓存。 海量联接情况下,MEC 要保证有品质的性能。 关键技术难点在于:空口环境多变、TSN(time sensitive network)的可控性、实时对网络各种状况的处理。 学术进展和挑战包括:低时延调度算法、预测和调度等系列算法的调度精度与效果。 (4)极致联接中的虚拟二层网络IP (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |