5G MEC 的本质是“联接+计算”
组网因为穿越宏网络,地址很难规划,因此推出5GLAN。尽管 5G LAN 支持 L2、L3,但更多是 3GPP 为虚拟二层网络而定义的。可以跨地域形成虚拟 LAN 专网。将联接不同基站下面的终端形成同一个虚拟本地网络。对工业应用、智慧家庭应用、企业办公应用、娱乐等群组应用都有好处。 在跨地域联接多个终端时,有时需要用私网地址与二层地址映射;或者在各终端移动和动态变更情况下,仍然体现在同一个局域网(LAN),可当作一个虚拟子网段来管理和使用。配置关系只经过移动网,而不需要再经过外挂的多个 LAN Switch 实现。 关键技术难点在于:全网在定义的虚拟专网区域行为一致。 学术进展和挑战包括:实时分布式协同数据库要考虑整网相应数据的一致性,学术上有方法、大网成功商用的也不算多。 (5)极致体验中的视频处理能力 由于 5G 的视频流量占比越来越高,将达到50%~80%。视频的极致体验尤为重要。MEC 可帮助 4K /8K 高清视频、VR 直播/点播、医疗、教育、交通等视频 5G 典型场景做所需内容的增强处理,包括修正误码、压缩码率、图像增强(根据场景)、多路径并行传输、拼接以及视频隐私保护(MEC 作为用户上传的第一入口,公众图像的隐私保护需要考虑人脸模糊化,这一点根据各个国家法律环境不同会有不同节奏要求)。 关键技术难点在于:实时视频的带宽、速率、编解码效率、交互体验以及上行带宽。 学术进展和挑战包括:超分辨率、结合 ROI的编解码、FOV、FreeD 等都在不断迭代前进的阶段。 (6)极致体验中的 AI 处理能力随着 5G 应用智能化、转发/计算/存储节点的合一化,MEC 上部署内容处理的 AI 能力将成为趋势。AI 智能分析有助于交通、安防以及智慧城市,结合 AI 的 AR/MR 有助于医疗、教育、工业信息辅助处理等。 华为 AI 芯片,提供单芯片 256 T 的最强算力,为边缘应用提供 2 倍以上的性价比和空间/ 能耗节省。 关键技术难点在于:AI 芯片的算力和高性价比。 学术进展和挑战包括:AI 芯片内置模型的准确性、实时性和可优化性。 (7)极简部署和自优化能力 边缘计算节点的量非常大,而且需要各边缘节点之间的协同,因此极简分层统一部署成为必要方案。单节点原有的配置量要大幅简化、多节点可批量部署。 移动网虚拟化之后,灵活调度、弹性伸缩、统一管理、统一控制能力也可作为对 MEC 用户面/ 资源层管控的一种机制,应用层 App 可以使用门户来更灵活入驻。 移动网络原来就可以网络级调度,MEC 可考虑除应用层 App 之外的部分沿用移动网云化管理机制。自优化能力包括基于访问热度、流量潮汐效应动态部署 App,实现 MEC 节点间的互备;基于用户、业务的动态切片。 华为作为 NFV 商用经验最丰富的设备商,在云的全栈系统构筑了丰富的运营和运维经验;相关经验将同步运用到 MEC 系统,实现统一管理、统一运维、云边协同和即插即用。 关键技术难点在于:不同类型设备高性价比。 学术进展和挑战包括:预测性维护、自优化能力等。 (8)可信安全 MEC 网络位置和功能要求必须感知应用内容,这在安全等级要求和风险上有所提升。MEC 上的 App 包含很多非电信类的强验证业务,在自我完备性上会有不足,这要求 MEC 提升防护能力和隔离能力。 关键技术难点在于:可信在虚拟机、容器环境的防护方式、多种威胁和安全设计。 学术进展和挑战包括:虚拟化情况下可信根算法该如何演进等。 (9)生态能力 MEC 生态可择优引入云生态的应用,容器化迁移云端应用,对应用尽可能平滑。应用对资源的灵活调研、弹性伸缩,应用本身的灵活部署、灰度升级,对 MEC 都有要求。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |