程序员深夜用Python跑神经网络,只为用中二动作关掉台灯
这部分看上去很复杂,但是通过使用Jupyter notebook、NumPy和Keras,我们就可以很直观地去观察数据、清理数据,并且使用数据来训练神经网络。 ![]() 根据我们的截图,我们可以发现npy文件中保存的数据和OpenPose模型本身都有三个维度,25个已知的身体位置坐标点,X、Y、以及Confidence。 我们的模型训练工作不需要用到confidence。如果某个身体位置坐标点被命名了,我们就保留它,否则,我们就直接让它为0。 我们已经把(绝大部分)数据梳理好了,现在我们需要把数据特征和标签结合起来。 我们用0代表其他姿势,1代表嘻哈超人舞步、2代表T-Pose舞步。
接下来,我们可以使用独热编码处理我们的数字标签。也就是说,我们将标签0、1、2转换成[1,0,0]、[0,1,0]、[0,0,1]。之后,我们可以使用sklearn的shuffle函数将数据标签和特征打乱(数据标签和特征仍保持原有的对应关系)
我们的输入数据代表着鼻子、手等等的位置,而它们的是介于0到720和0到1280之间的像素值,所以我们需要把数据归一化。这样一来,我们可以重复使用我们的模型而不用考虑输入图片数据的分辨率。
在最后一步中,我们将把我们的多维数据变成一维。我们会分批向模型输入50个位置信息(25个部位,每个部位的X和Y值)。 构建并训练我们的模型(编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |