产业智能化的百度经验:飞桨结合智能云,让AI赋能千行万业
首先从开发的角度,我们提供一个开发便捷的深度学习框架;而从训练的角度,可以支持超大规模的训练;从部署的角度,可以进行多端、多平台的高性能推理引擎的部署;同时提供很多产业级的模型库。 从开发的角度,飞桨提供一个开发便捷的深度学习框架。一方面,大家知道这些软件系统都是很多程序员在写,程序员有自己写程序的习惯,我们这种组网式的编程范式与程序员的开发习惯非常一致,程序员开发起来会很有效率,而且也很容易上手;另外一个方面是设计网络结构,深度学习发展很多年,多数深度学习的系统网络都是人类专家来设计的,但是,设计网络结构是很专、很不容易的一件事情。所以,我们开发网络结构的自动设计。现在机器自动设计的网络,在很多情况下已经比人类专家设计的网络得到的效果还好。 另一个方面,大规模训练面临的挑战。飞桨支持超大规模的特征、训练数据、模型参数、流式学习等等。我们开发的这套系统现在已经可以支持万亿级参数模型,不止是能支持这样的训练,同时可以支持实时的更新。 说到多端多平台,飞桨能很好的支撑从服务器到端、不同的操作系统之间,甚至不同框架之间的无缝衔接。这里是一些具体的数据,大家可以看到,我们通用架构的推理,它的速度是非常快的。同时,刚才我提到的跟华为的合作,我们针对华为的NPU做了定向的优化,使它的推理速度得到进一步的提升。 另外一方面,所有这些基础框架,与真正的开发应用之间还有一步,我们定向地为不同的典型应用提供很多官方的模型库,比如说语言理解的、增强学习的、视觉的等等。飞桨的这些模型都在大规模的应用中得到过验证,同时我们也在一些国际的比赛中测试了这些模型,夺得了很多个第一。 刚才讲的是基本的框架模型等等,另一方面,我们还有完备的工具组件,以及面向任务的开发套件,以及产业级的服务平台。 举几个例子,比如说语言理解,大家知道现在语言理解,我们也都基于深度学习框架来做,像百度的ERNIE。一方面,我们现在用的深度学习技术是从海量的数据里进行学习,但是它没有知识作为前提。百度开发了一个非常庞大的,有3000多亿个事实的知识图谱,我们用知识来增强基于深度学习的语言理解框架,就产生了ERNIE。另一方面,我们又加入了持续学习的技术,从而让ERNIE有一个非常好的表现。下面浅蓝色的线是现在SOTA最好的结果,我们用ERNIE+百科知识——我们知识图谱也有很多来源——加进去以后,大家可以看到有很明显的提升。我们更高兴地看到,持续加入不同的知识,比如加入对话知识、篇章结构知识等等,这个系统还可以进一步提升它的性能。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |