实操回顾:如何通过社群运营使项目营收从0增至千万
主要收集3类数据(分析目的):
2)找到影响关键指标的关键行为因素 用户进入社群后,影响转化率的用户行为可能有:发言提问、打开学习课程、学完课程、参与群活动、领取优惠券等。 那么结合时间点,用户的每日课程打开率、学完率、每日发言频次、讲座参与率、领券率都是需要密切关注的数据。 考虑到数据样本量和统计难度,先对小程序课程的打开率、学习率、领券率等进行埋点做定量分析,用户在社群内的发言频次、讲座参与情况等行为做用户标签,做定性判断。 以学习情况为例,学习率对免费得到课程,且仅仅只有3-5天学习时间的用户来说,是否能影响购买决策?影响值有多大,是否足够成为关键因素? 后台能拉取到2020年02月02日开班的这批课程里,有200个班级学员,这些学员的课程学习情况数据如下: 表里有用户基本信息,最后打开时间和课程学习情况。每节课里有4个环节,这里面1、2、3、4是指这个学员学到了这个课程里的第几个环节,0就代表一个环节未学。 这个后台数据是按照课程的学习情况来统计的,没有时间维度。就需要在定义的社群运营时间内,拉出这些学员的学习情况,以及付费情况。做交叉对比。 要了解学习率与付费率的关系,用户的基础信息先不看。 数据处理:定义在时间段内,学习过一个课程环节即视为学习过课程,对原数据进行处理,0为一次未学习,1为学习过至少1个环节。得到一个班级的学习率情况。 放大颗粒度,查看多个班级的学习率和付费率,以班级为单位比对学习率和转化率,有正向关系,但关系度有多大并不能明确。 回到表一,我们拉取过去1个月1万个体验课用户的学习情况进行取值。 可以和BI同学协作把数据放入相应模型寻找规律,找到聚合的分类方式。 (编辑:西安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |